ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic B-T Phase Diagram of Non-Kramers System PrRh2Zn20

118   0   0.0 ( 0 )
 نشر من قبل Yo Machida
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the low temperature quadrupolar phenomena of the non-Kramers system PrRh2Zn20 under magnetic fields in the [100] and [110] directions. Our experiments reveal the B-T phase diagram of PrRh2Zn20 involving four electronic states regardless of the field direction, namely, a non-Fermi liquid (NFL) state, an antiferro-quadrupolar (AFQ) ordered state, a novel heavy-fermion (HF) state, and a field-induced singlet (FIS) state. In the wide range of the NFL state, the resistivity can be well scaled by a characteristic temperature, suggesting the realization of the quadrupole Kondo effect. The HF state exhibits a Fermi liquid behavior with a large A coefficient of the T^2 term in the resistivity, suggesting the formation of nontrivial heavy quasi-particles. The FIS state results from the considerable splitting of a non-Kramers doublet by a magnetic field. The phase diagram shows a large anisotropy with respect to the field direction. It is found that the anisotropy of the phase diagram can be explained in terms of that of the energy splitting of the non-Kramers doublet by a magnetic field. This indicates that the low temperature properties of PrRh2Zn20 are governed by the non-Kramers doublet, namely, quadrupole degrees of freedom. Since a similar phase diagram has been obtained for the related compound PrIr2Zn20, it is expected that the B-T phase diagram constructed in this work is universal throughout non-Kramers systems.



قيم البحث

اقرأ أيضاً

We have studied by Quantum Monte Carlo simulations the low temperature phase diagram of a mixture of isotopic, hard core bosons, described by the t-Jz-Jperp model, with Jperp=a Jz. Coexistence of superfluid hole-rich and insulating, antiferromagnetic ally ordered hole-free phases is observed at sufficiently low hole density, for any a < 1. A two-component checkerboard supersolid phase is not observed. The experimental relevance and possible broader implications of these findings are discussed.
In this study, ultrasonic measurements were performed on a single crystal of cubic PrNi$_2$Cd$_{20}$, down to a temperature of 0.02 K, to investigate the crystalline electric field ground state and search for possible phase transitions at low tempera tures. The elastic constant $(C_{11}-C_{12})/2$, which is related to the $Gamma_3$-symmetry quadrupolar response, exhibits the Curie-type softening at temperatures below $sim$30 K, which indicates that the present system has a $Gamma_3$ non-Kramers doublet ground state. A leveling-off of the elastic response appears below $sim$0.1 K toward the lowest temperatures, which implies the presence of level splitting owing to a long-range order in a finite-volume fraction associated with $Gamma_3$-symmetry multipoles. A magnetic field-temperature phase diagram of the present compound is constructed up to 28 T for $H parallel$ [110]. A clear acoustic de Haas-van Alphen signal and a possible magnetic-field-induced phase transition at $H sim$26 T are also detected by high-magnetic-field measurements.
CeAu2Ge2 single crystals (tetragonal ThCr2Si2 structure) have been grown in Au-Ge flux (AGF) as well as in Sn flux (SF). X-ray powder-diffraction and EDX measurements indicate that in the latter case Sn atoms from the flux are incorporated in the sam ples, leading to a decrease of the lattice constants by ~ 0.3% compared to AGF samples. For both types of samples, a strong anisotropy of the magnetization M for the magnetic field B parallel and perpendicular to the c direction is observed with M||/M^{bot} ~ 6 - 7 in low fields just above 10 K. This anisotropy is preserved to high fields and temperatures and can be quantitatively explained by crystal electric field effects. Antiferromagnetic ordering sets in around 10 K as previously found for polycrystalline samples. From the magnetization data of our single crystals we obtain the phase diagrams for the AGF and SF samples. The magnetic properties depend strongly on the flux employed. While the AGF samples exhibit a complex behavior indicative of several magnetic transitions, the SF samples adopt a simpler antiferromagnetic structure with a single spin-flop transition. This effect of a more ordered state induced by disorder in form of Sn impurities is qualitatively explained within the ANNNI model, which assumes ferromagnetic and antiferromagnetic interactions in agreement with the magnetic structure previously inferred from neutron-scattering experiments on polycrystalline CeAu2Ge2 by Loidl et al. [Phys. Rev. B 46, 9341, (1992)].
63 - M.E. Torio , A.A. Aligia , 2003
We study the half filled Hubbard chain including next-nearest-neighbor hopping $t$. The model has three phases: one insulating phase with dominant spin-density-wave correlations at large distances (SDWI), another phase with dominant spin-dimer correl ations or dimerized insulator (DI), and a third one in which long distance correlations indicate singlet superconductivity (SS). The boundaries of the SDWI are accurately determined numerically through a crossing of excited energy levels equivalent to the jump in the spin Berry phase. The DI-SS boundary is studied using several indicators like correlation exponent $K_{rho}$, Drude weight $D_{c}$, localization parameter $z_{L}$ and charge gap $Delta_{c}$.
NdFeAsO0.88F0.12 belongs to the recently discovered family of high-TC iron-based superconductors. The influence of high pressure on transport properties of this material has been studied. Contrary to La-based compounds, we did not observe a maximum i n TC under pressure. Under compression, TC drops rapidly as a linear function of pressure with the slope k = -2.8 pm 0.1 K / GPa. The extrapolated value of TC at zero pressure is about TC (0) = 51.7 pm 0.4 K. At pressures higher than ~18.4 GPa, the superconducting state disappears at all measured temperatures. The resistance changes slope and shows a turn-up behavior, which may be related to the Kondo effect or a weak localization of two-dimensional carriers below ~45 K that is above TC and thus competing with the superconducting phase. The behavior of the sample is completely reversible at the decompression. On the bases of our experimental data, we propose a tentative P-T phase diagram of NdFeAsO0.88F0.12.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا