ﻻ يوجد ملخص باللغة العربية
In this study, ultrasonic measurements were performed on a single crystal of cubic PrNi$_2$Cd$_{20}$, down to a temperature of 0.02 K, to investigate the crystalline electric field ground state and search for possible phase transitions at low temperatures. The elastic constant $(C_{11}-C_{12})/2$, which is related to the $Gamma_3$-symmetry quadrupolar response, exhibits the Curie-type softening at temperatures below $sim$30 K, which indicates that the present system has a $Gamma_3$ non-Kramers doublet ground state. A leveling-off of the elastic response appears below $sim$0.1 K toward the lowest temperatures, which implies the presence of level splitting owing to a long-range order in a finite-volume fraction associated with $Gamma_3$-symmetry multipoles. A magnetic field-temperature phase diagram of the present compound is constructed up to 28 T for $H parallel$ [110]. A clear acoustic de Haas-van Alphen signal and a possible magnetic-field-induced phase transition at $H sim$26 T are also detected by high-magnetic-field measurements.
Praseodymium-based 1-2-20 cage compounds Pr$T_2X_{20}$ ($T$ is generally Ti, V, Nb, Ru, Rh, Ir; and $X$ is either Al, Zn or Cd) provide yet another platform to study non-trivial electronic states of matter ranging from topological and magnetic orders
We have investigated the low temperature quadrupolar phenomena of the non-Kramers system PrRh2Zn20 under magnetic fields in the [100] and [110] directions. Our experiments reveal the B-T phase diagram of PrRh2Zn20 involving four electronic states reg
We discuss possible competition between magnetic and quadrupole Kondo effects in non-Kramers doublet systems under cubic symmetry. The quadrupole Kondo effect leads to non-Fermi-liquid (NFL) ground state, while the magnetic one favors ordinary Fermi
The magnetic ground state phase diagram of the ferromagnetic Kondo-lattice model is constructed by calculating internal energies of all possible bipartite magnetic configurations of the simple cubic lattice explicitly. This is done in one dimension (
Acoustic signatures of the single-site quadrupolar Kondo effect in Y$_{0.966}$Pr$_{0.034}$Ir$_2$Zn$_{20}$ are presented. The elastic constant ($C_{11}-C_{12}$)/2, corresponding to the $Gamma_3$(E)-symmetry electric-quadrupolar response, reveals a log