ﻻ يوجد ملخص باللغة العربية
The Poisson-Boltzmann equation (PBE) models the electrostatic interactions of charged bodies such as molecules and proteins in an electrolyte solvent. The PBE is a challenging equation to solve numerically due to the presence of singularities, discontinuous coefficients and boundary conditions. Hence, there is often large error in the numerical solution of the PBE that needs to be quantified. In this work, we use adjoint based a posteriori analysis to accurately quantify the error in an important quantity of interest, the solvation free energy, for the finite element solution of the PBE. We identify various sources of error and propose novel refinement strategies based on a posteriori error estimates.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of
In numerical simulations of many charged systems at the micro/nano scale, a common theme is the repeated solution of the Poisson-Boltzmann equation. This task proves challenging, if not entirely infeasible, largely due to the nonlinearity of the equa
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli
This work further improves the pseudo-transient approach for the Poisson Boltzmann equation (PBE) in the electrostatic analysis of solvated biomolecules. The numerical solution of the nonlinear PBE is known to involve many difficulties, such as expon
We consider Chorin-Temam scheme (the simplest pressure-correction projection method) for the time-discretization of an unstationary Stokes problem. Inspired by the analyses of the Backward Euler scheme performed by C.Bernardi and R.Verfurth, we deriv