ﻻ يوجد ملخص باللغة العربية
We consider Chorin-Temam scheme (the simplest pressure-correction projection method) for the time-discretization of an unstationary Stokes problem. Inspired by the analyses of the Backward Euler scheme performed by C.Bernardi and R.Verfurth, we derive a posteriori estimators for the error on the velocity gradient in L2 norm. Our invesigation is supported by numerical experiments.
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
We present a residual-based a posteriori error estimator for the hybrid high-order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation o
For the Stokes equation over 2D and 3D domains, explicit a posteriori and a priori error estimation are novelly developed for the finite element solution. The difficulty in handling the divergence-free condition of the Stokes equation is solved by ut
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacl
The paper is concerned with the adaptive finite element solution of linear elliptic differential equations using equidistributing meshes. A strategy is developed for defining this type of mesh based on residual-based a posteriori error estimates and