ترغب بنشر مسار تعليمي؟ اضغط هنا

A posteriori error estimates for the Richards equation

216   0   0.0 ( 0 )
 نشر من قبل Koondanibha Mitra PhD
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both parabolic-hyperbolic and parabolic-elliptic kinds of degeneracies. In this study, we provide reliable, fully computable, and locally space-time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space-time efficiency error bounds are then obtained in a standard $H^1(H^{-1})cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as flux nonconformity, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.



قيم البحث

اقرأ أيضاً

Hybrid quantum/molecular mechanics models (QM/MM methods) are widely used in material and molecular simulations when MM models do not provide sufficient accuracy but pure QM models are computationally prohibitive. Adaptive QM/MM coupling methods feat ure on-the-fly classification of atoms during the simulation, allowing the QM and MM subsystems to be updated as needed. In this work, we propose such an adaptive QM/MM method for material defect simulations based on a new residual based it a posteriori error estimator, which provides both lower and upper bounds for the true error. We validate the analysis and illustrate the effectiveness of the new scheme on numerical simulations for material defects.
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
127 - F. Bertrand , G. Starke 2020
A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the H1({Omega})-conforming Taylor-H ood finite element combination, consisting of polynomial degrees k + 1 for the displacements and the fluid pressure and k for the total pressure. An a posteriori error estimator is derived on the basis of H(div)-conforming reconstructions of the stress and flux approximations. The symmetry of the reconstructed stress is allowed to be satisfied only weakly. The reconstructions can be performed locally on a set of vertex patches and lead to a guaranteed upper bound for the error with a constant that depends only on local constants associated with the patches and thus on the shape regularity of the triangulation. Particular emphasis is given to nearly incompressible materials and the error estimates hold uniformly in the incompressible limit. Numerical results on the L-shaped domain confirm the theory and the suitable use of the error estimator in adaptive strategies.
The logarithmic nonlinearity has been used in many partial differential equations (PDEs) for modeling problems in various applications.Due to the singularity of the logarithmic function, it introducestremendous difficulties in establishing mathematic al theories, as well asin designing and analyzing numerical methods for PDEs with such nonlinearity. Here we take the logarithmic Schrodinger equation (LogSE)as a prototype model. Instead of regularizing $f(rho)=ln rho$ in theLogSE directly and globally as being done in the literature, we propose a local energy regularization (LER) for the LogSE byfirst regularizing $F(rho)=rholn rho -rho$ locally near $rho=0^+$ with a polynomial approximation in the energy functional of the LogSE and then obtaining an energy regularized logarithmic Schrodinger equation (ERLogSE) via energy variation. Linear convergence is established between the solutions of ERLogSE and LogSE in terms of a small regularization parameter $0<epll1$. Moreover, the conserved energy of the ERLogSE converges to that of LogSE quadratically, which significantly improvesthe linear convergence rate of the regularization method in the literature. Error estimates are alsopresented for solving the ERLogSE by using Lie-Trotter splittingintegrators. Numerical results are reported to confirm our errorestimates of the LER and of the time-splitting integrators for theERLogSE. Finally our results suggest that the LER performs better than regularizing the logarithmic nonlinearity in the LogSE directly.
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this paper we consider adjoint-based a posteriori analysis to estimate the error in a quantity of interest of the solution. This error formula is derived by first developing a nodally equivalent finite element method to the spectral deferred correction method. The error formula is then split into various terms, each of which characterizes a different component of the error. These components may be used to determine the optimal strategy for changing the method parameters to best improve the error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا