ﻻ يوجد ملخص باللغة العربية
Raman scattering is a ubiquitous phenomenon in light-matter interactions which reveals a materials electronic, structural and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe2 monolayer with materials such as SiO2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons which are either traditionally inactive or weak. This Raman scattering can be amplified by nearly two orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe2 directly, or via an A1 optical phonon from WSe2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe2 sample geometries. This cross-platform electron-phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, el
Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral c
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in
Hyperbolic materials exhibit unique properties that enable a variety of intriguing applications in nanophotonics. The topological insulator Bi2Se3 represents a natural hyperbolic optical medium, both in the THz and visible range. Here, using cathodol