ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast transition between exciton phases in van der Waals heterostructures

374   0   0.0 ( 0 )
 نشر من قبل Fabian Mooshammer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, electrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.

قيم البحث

اقرأ أيضاً

Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral c omposite bosons consisting of electrons and holes, excitons show a non-trivial scattering dynamics. Here, we study on microscopic footing exciton-exciton interaction in transition-metal dichalcogenides and related van der Waals heterostructures. We demonstrate that the crucial criterion for efficient scattering is a large electron/hole mass asymmetry giving rise to internal charge inhomogeneities of excitons and emphasizing their cobosonic substructure. Furthermore, both exchange and direct exciton-exciton interactions are boosted by enhanced exciton Bohr radii. We also predict an unexpected temperature dependence that is usually associated to phonon-driven scattering and we reveal an orders of magnitude stronger interaction of interlayer excitons due to their permanent dipole moment. The developed approach can be generalized to arbitrary material systems and will help to study strongly correlated exciton systems, such as moire super lattices.
357 - C. Robert , M.A. Semina , F. Cadiz 2017
The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A-exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing to extrapolate an exciton binding energy of about 220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.
Van der Waals heterostructures have recently been identified as providing many opportunities to create new two-dimensional materials, and in particular to produce materials with topologically interesting states. Here we show that it is possible to cr eate such heterostructures with multiple topological phases in a single nanoscale island. We discuss their growth within the framework of diffusion-limited aggregation, the formation of moire patterns due to the differing crystallographies of the materials comprising the heterostructure, and the potential to engineer both the electronic structure as well as local variations of topological order. In particular we show that it is possible to build islands which include both the hexagonal $beta$- and rectangular $alpha$-forms of antimonene, on top of the topological insulator $alpha$-bismuthene. This is the first experimental realisation of $alpha$-antimonene, and we show that it is a topologically non-trivial material in the quantum spin Hall class.
Raman scattering is a ubiquitous phenomenon in light-matter interactions which reveals a materials electronic, structural and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material propert ies. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe2 monolayer with materials such as SiO2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons which are either traditionally inactive or weak. This Raman scattering can be amplified by nearly two orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe2 directly, or via an A1 optical phonon from WSe2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe2 sample geometries. This cross-platform electron-phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.
Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplary MoSe$_2$-WSe$_2$ heterostructure the interlayer exciton binding energies and wave functions as well as their time- and energy-resolved dynamics. Finally, we predict the dominant contribution of interlayer excitons to the photoluminescence of these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا