ترغب بنشر مسار تعليمي؟ اضغط هنا

Naturally occurring van der Waals materials

141   0   0.0 ( 0 )
 نشر من قبل Andres Castellanos-Gomez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.



قيم البحث

اقرأ أيضاً

The fabrication of van der Waals heterostructures, artificial materials assembled by individually stacking atomically thin (2D) materials, is one of the most promising directions in 2D materials research. Until now, the most widespread approach to st ack 2D layers relies on deterministic placement methods which are cumbersome when fabricating multilayered stacks. Moreover, they tend to suffer from poor control over the lattice orientations and the presence of unwanted adsorbates between the stacked layers. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the materials electronic properties and crystal structure, and explore applications for near-infrared photodetectors (exploiting its narrow bandgap) and for p-n junctions based on the stacking of MoS2 (n-doped) and franckeite (p-doped)
We present vibrational properties of Franckeite, which is a naturally occurring van der Waals heterostructure consisting of two different semiconducting layers. Franckeite is a complex layered crystal composed of alternating SnS$_2$ like pseudohexago nal and PbS-like pseudotetragonal layers stacked on top of each other, providing a unique platform to study vibrational properties and thermal transport across layers with mass density and phonon mismatches. By using micro-Raman spectroscopy and first-principles Raman simulations, we found that the PbS-like pseudotetragonal structure is mostly composed of Pb$_3$SbS$_4$. We also discovered several low-frequency Raman modes that originate from the intralayer vibrations of the pseudotetragonal layer. Using density functional theory, we determined all vibrational patterns of Franckeite, whose signatures are observed in the Raman spectrum. By studying temperature dependent Raman spectroscopy (300 K - 500 K), we have found different temperature coefficients for both pseudotetragonal and pseudohexagonal layers. We believe that our study will help understand the vibration modes of its complex heterostructure and the thermal properties at the nanoscale.
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. We present optical dispersion engineering in a superlattice structure comprised of alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate > 90 % narrowband absorption in < 4 nm active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in cm2 samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tunable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically-thin layers.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are the subject of intense investigation for applications in optics, electronics, catalysis, and energy storage. Their optical and electronic properties can be significantly enhanced when encapsulated in an environment that is free of charge disorder. Because hexagonal boron nitride (h-BN) is atomically thin, highly-crystalline, and is a strong insulator, it is one of the most commonly used 2D materials to encapsulate and passivate TMDCs. In this report, we examine how ultrathin h-BN shields an underlying MoS2 TMDC layer from the energetic argon plasmas that are routinely used during semiconductor device fabrication and post-processing. Aberration-corrected Scanning Transmission Electron Microscopy is used to analyze defect formation in both the h-BN and MoS2 layers, and these observations are correlated with Raman and photoluminescence spectroscopy. Our results highlight that h-BN is an effective barrier for short plasma exposures (< 30 secs) but is ineffective for longer exposures, which result in extensive knock-on damage and amorphization in the underlying MoS2.
Two-dimensional (2D) MoSi$_2$N$_4$ monolayer is an emerging class of air-stable 2D semiconductor possessing exceptional electrical and mechanical properties. Despite intensive recent research efforts devoted to uncover the material properties of MoSi $_2$N$_4$, the physics of electrical contacts to MoSi$_2$N$_4$ remains largely unexplored thus far. In this work, we study the van der Waals heterostructures composed of MoSi$_2$N$_4$ contacted by graphene and NbS$_2$ monolayers using first-principle density functional theory calculations. We show that the MoSi$_2$N$_4$/NbS$_2$ contact exhibits an ultralow Schottky barrier height (SBH), which is beneficial for nanoelectronics applications. For MoSi$_2$N$_4$/graphene contact, the SBH can be modulated via interlayer distance or via external electric fields, thus opening up an opportunity for reconfigurable and tunable nanoelectronic devices. Our findings provide insights on the physics of 2D electrical contact to MoSi$_2$N$_4$, and shall offer a critical first step towards the design of high-performance electrical contacts to MoSi$_2$N$_4$-based 2D nanodevices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا