ترغب بنشر مسار تعليمي؟ اضغط هنا

Recollision of excited electron in below-threshold nonsequential double ionization

91   0   0.0 ( 0 )
 نشر من قبل Yuxing Bai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Consensus has been reached that recollision, as the most important post-tunneling process, is responsible for nonsequential double ionization process in intense infrared laser field, however, its effect has been restricted to interaction between the first ionized electron and the residual univalent ion so far. Here we identify the key role of recollision between the second ionized electron and the divalent ion in the below-threshold nonsequential double ionization process by introducing a Coulomb-corrected quantum-trajectories method, which enables us to well reproduce the experimentally observed cross-shaped and anti-correlated patterns in correlated two-electron momentum distributions, and also the transition between these two patterns. Being significantly enhanced relatively by the recapture process, recolliding trajectories of the second electron excited by the first- or third-return recolliding trajectories of the first electron produce the cross-shaped or anti-correlated distributions, respectively. And the transition is induced by the increasing contribution of the third return with increasing pulse duration. Our work provides new insight into atomic ionization dynamics and paves the new way to imaging of ultrafast dynamics of atoms and molecules in intense laser field.



قيم البحث

اقرأ أيضاً

We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr ibutions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
203 - J. Feist , S. Nagele , R. Pazourek 2008
We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational meth od is based on the solution of the time-dependent Schroedinger equation and subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent calculations and discuss the emerging similarities and differences. We investigate the role of electronic correlation in the representation of the two-electron continuum states, which are used to extract the ionization yields from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape on the cross sections in time-dependent calculations and address convergence issues.
145 - R. Pazourek , J. Feist , S. Nagele 2011
We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.
Using a three-dimensional semiclassical model, we study double ionization for strongly-driven He fully accounting for magnetic field effects. For linearly and slightly elliptically polarized laser fields, we show that recollisions and the magnetic fi eld combined act as a gate. This gate favors more transverse - with respect to the electric field - initial momenta of the tunneling electron that are opposite to the propagation direction of the laser field. In the absence of non-dipole effects, the transverse initial momentum is symmetric with respect to zero. We find that this asymmetry in the transverse initial momentum gives rise to an asymmetry in a double ionization observable. Finally, we show that this asymmetry in the transverse initial momentum of the tunneling electron accounts for a recently-reported unexpectedly large average sum of the electron momenta parallel to the propagation direction of the laser field.
Fully accounting for non-dipole effects in the electron dynamics, double ionization is studied for He driven by a near-infrared laser field and for Xe driven by a mid-infrared laser field. Using a three-dimensional semiclassical model, the average su m of the electron momenta along the propagation direction of the laser field is computed. This sum is found to be an order of magnitude larger than twice the average electron momentum along the propagation direction of the laser field in single ionization. Moreover, the average sum of the electron momenta in double ionization is found to be maximum at intensities smaller than the intensities satisfying previously predicted criteria for the onset of magnetic field effects. It is shown that strong recollisions are the reason for this unexpectedly large value of the sum of the momenta along the direction of the magnetic component of the Lorentz force.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا