ﻻ يوجد ملخص باللغة العربية
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic, robust, and constructive approach to the stability analysis of self-similar blowup in parabolic evolution equations. In particular, we completely avoid using delicate Lyapunov functionals, monotonicity formulas, indirect arguments, or fragile parabolic structure like the maximum principle. As a matter of fact, our approach reduces the nonlinear stability analysis of self-similar shrinkers to the spectral analysis of the associated self-adjoint linearized operators.
We prove the existence of a (spectrally) stable self-similar blow-up solution $f_0$ to the heat flow for corotational harmonic maps from $mathbb R^3$ to the three-sphere. In particular, our result verifies the spectral gap conjecture stated by one of
This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this e
We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturba
We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability of the ODE blowup profile.
We consider wave maps on $(1+d)$-dimensional Minkowski space. For each dimension $dgeq 8$ we construct a negatively curved, $d$-dimensional target manifold that allows for the existence of a self-similar wave map which provides a stable blowup mechanism for the corresponding Cauchy problem.