ﻻ يوجد ملخص باللغة العربية
We consider wave maps on $(1+d)$-dimensional Minkowski space. For each dimension $dgeq 8$ we construct a negatively curved, $d$-dimensional target manifold that allows for the existence of a self-similar wave map which provides a stable blowup mechanism for the corresponding Cauchy problem.
We consider the energy-critical half-wave maps equation $$partial_t mathbf{u} + mathbf{u} wedge | abla| mathbf{u} = 0$$ for $mathbf{u} : [0,T) times mathbb{R} to mathbb{S}^2$. We give a complete classification of all traveling solitary waves with fin
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic
We consider co-rotational wave maps from the $(1+d)$-dimensional Minkowski space into the $d$-sphere for $dgeq 3$ odd. This is an energy-supercritical model which is known to exhibit finite-time blowup via self-similar solutions. Based on a method de
We establish Strichartz estimates for the radial energy-critical wave equation in 5 dimensions in similarity coordinates. Using these, we prove the nonlinear asymptotic stability of the ODE blowup in the energy space.
We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturba