ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperboloidal similarity coordinates and a globally stable blowup profile for supercritical wave maps

170   0   0.0 ( 0 )
 نشر من قبل Roland Donninger
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturbations of the initial data. The key ingredient is the introduction of a novel coordinate system that allows one to track the evolution past the blowup time and almost up to the Cauchy horizon of the singularity. As a consequence, we also obtain a result on continuation beyond blowup.

قيم البحث

اقرأ أيضاً

This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this e quation known in closed form. It will be proved that this profile is stable in the whole space under small perturbations of the initial data. The blowup analysis is based on a recently developed coordinate system called hyperboloidal similarity coordinates and depends crucially on growth estimates for the free wave evolution, which will be constructed systematically for odd space dimensions in the first part of this paper. This allows to develop a nonlinear stability theory beyond the singularity.
78 - Roland Donninger 2015
We establish Strichartz estimates in similarity coordinates for the radial wave equation in three spatial dimensions with a (time-dependent) self-similar potential. As an application we consider the critical wave equation and prove the asymptotic sta bility of the ODE blowup profile in the energy space.
We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability of the ODE blowup profile.
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic , robust, and constructive approach to the stability analysis of self-similar blowup in parabolic evolution equations. In particular, we completely avoid using delicate Lyapunov functionals, monotonicity formulas, indirect arguments, or fragile parabolic structure like the maximum principle. As a matter of fact, our approach reduces the nonlinear stability analysis of self-similar shrinkers to the spectral analysis of the associated self-adjoint linearized operators.
We consider the wave equation with a focusing cubic nonlinearity in higher odd space dimensions without symmetry restrictions on the data. We prove that there exists an open set of initial data such that the corresponding solution exists in a backwar d light-cone and approaches the ODE blowup profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا