ﻻ يوجد ملخص باللغة العربية
We prove the existence of a (spectrally) stable self-similar blow-up solution $f_0$ to the heat flow for corotational harmonic maps from $mathbb R^3$ to the three-sphere. In particular, our result verifies the spectral gap conjecture stated by one of the authors and lays the groundwork for the proof of the nonlinear stability of $f_0$. At the heart of our analysis lies a new existence result of a monotone self-similar solution $f_0$. Although solutions of this kind have already been constructed before, our approach reveals substantial quantitative properties of $f_0$, leading to the stability result. A key ingredient is the use of interval arithmetic: a rigorous computer-assisted method for estimating functions. It is easy to verify our results by robust numerics but the purpose of the present paper is to provide mathematically rigorous proofs.
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic
This paper is concerned with the Cauchy problem for an energy-supercritical nonlinear wave equation in odd space dimensions that arises in equivariant Yang-Mills theory. In each dimension, there is a self-similar finite-time blowup solution to this e
We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturba
We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability of the ODE blowup profile.
We will give a new proof of a recent result of P.~Daskalopoulos, G.Huisken and J.R.King ([DH] and reference [7] of [DH]) on the existence of self-similar solution of the inverse mean curvature flow which is the graph of a radially symmetric solution