ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-equilibrium microscopic description of spallation

131   0   0.0 ( 0 )
 نشر من قبل Paolo Napolitani
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the prompt emission of few intermediate-mass fragments in spallation reactions induced by protons and deuterons in the 1 GeV range. Such emission has a minor contribution to the total reaction cross section, but it may overcome evaporation and fission channels in the formation of light nuclides. The role of mean-field dynamics and phase-space fluctuations in these reactions is investigated through the Boltzmann-Langevin transport equation. We found that a process of frustrated fragmentation and re-aggregation is a prominent mechanism of production of IMFs which can not be assimilated to the statistical decay of a compound nucleus. Very interestingly, this process may yield a small number of IMF in the exit channel, which may even reduce to two, and be wrongly confused with ordinary asymmetric fission. This interpretation, inspired by nuclear-spallation experiments, can be generalised to heavy-ion collisions approaching the fragmentation threshold.

قيم البحث

اقرأ أيضاً

We studied the complete dynamics of the proton-induced spallation process with the microscopic framework of the Constrained Molecular Dynamics (CoMD) Model. We performed calculations of proton-induced spallation reactions on 181Ta, 208Pb, and 238U ta rgets with the CoMD model and compared the results with a standard two-step approach based on an intranuclear cascade model (INC) followed by a statistical deexcitation model. The calculations were also compared with recent experimental data from the literature. Our calculations showed an overall satisfactory agreement with the experimental data and suggest further improvements in the models. We point out that this CoMD study represents the first complete dynamical description of spallation reactions with a microscopic N-body approach and may lead to advancements in the physics-based modelling of the spallation process.
118 - P. Napolitani , M. Colonna 2015
Heavy nuclei bombarded with protons and deuterons in the 1 GeV range have a large probability of undergoing a process of evaporation and fission; less frequently, the prompt emission of few intermediate-mass fragments can also be observed. We emplo y a recently developed microscopic approach, based on the Boltzmann-Langevin transport equation, to investigate the role of mean-field dynamics and phase-space fluctuations in these reactions. We find that the formation of few IMFs can be confused with asymmetric fission when relying on yield observables, but it can not be assimilated to the statistical decay of a compound nucleus when analysing the dynamics and kinematic observables: it can be described as a fragmentation process initiated by phase-space fluctuations, and successively frustrated by the mean-field resilience. As an extreme situation, which corresponds to non-negligible probability, the number of fragments in the exit channel reduces to two, so that fission-like events are obtained by re-aggregation processes. This interpretation, inspired by nuclear-spallation experiments, can be generalised to heavy-ion collisions from Fermi to relativistic energies, for situations when the system is closely approaching the fragmentation threshold.
103 - Jie Zhao , Tamara Nikv{s}ic , 2021
The role of dynamical pairing in induced fission dynamics is investigated using the time-dependent generator coordinate method in the Gaussian overlap approximation, based on the microscopic framework of nuclear energy density functionals. A calculat ion of fragment charge yields for induced fission of $^{228}$Th is performed in a three-dimensional space of collective coordinates that, in addition to the axial quadrupole and octupole intrinsic deformations of the nuclear density, also includes an isoscalar pairing degree of freedom. It is shown that the inclusion of dynamical pairing has a pronounced effect on the collective inertia, the collective flux through the scission hyper-surface, and the resulting fission yields, reducing the asymmetric peaks and enhancing the contribution of symmetric fission, in better agreement with the empirical trend.
Octupole deformations and related collective excitations are analyzed using the framework of nuclear density functional theory. Axially-symmetric quadrupole-octupole constrained self-consistent mean-field (SCMF) calculations with a choice of universa l energy density functional and a pairing interaction are performed for Xe, Ba, and Ce isotopes from proton-rich to neutron-rich regions, and neutron-rich Se, Kr, and Sr isotopes, in which enhanced octupole correlations are expected to occur. Low-energy positive- and negative-parity spectra and transition strengths are computed by solving the quadrupole-octupole collective Hamiltonian, with the inertia parameters and collective potential determined by the constrained SCMF calculations. Octupole-deformed equilibrium states are found in the potential energy surfaces of the Ba and Ce isotopes with $Napprox 56$ and 88. The evolution of spectroscopic properties indicates enhanced octupole correlations in the regions corresponding to $Napprox Zapprox 56$, $Zapprox 88$ and $Zapprox 56$, and $Napprox 56$ and $Zapprox 34$. The average $beta_{30}$ deformation parameter and its fluctuation exhibit signatures of octupole shape phase transition around $N=56$ and 88.
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfac es onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $beta_{2}$-$beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for $beta_{3}$-soft potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا