ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic self-consistent description of induced fission: dynamical pairing degree of freedom

104   0   0.0 ( 0 )
 نشر من قبل Jie Zhao
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of dynamical pairing in induced fission dynamics is investigated using the time-dependent generator coordinate method in the Gaussian overlap approximation, based on the microscopic framework of nuclear energy density functionals. A calculation of fragment charge yields for induced fission of $^{228}$Th is performed in a three-dimensional space of collective coordinates that, in addition to the axial quadrupole and octupole intrinsic deformations of the nuclear density, also includes an isoscalar pairing degree of freedom. It is shown that the inclusion of dynamical pairing has a pronounced effect on the collective inertia, the collective flux through the scission hyper-surface, and the resulting fission yields, reducing the asymmetric peaks and enhancing the contribution of symmetric fission, in better agreement with the empirical trend.



قيم البحث

اقرأ أيضاً

Single-particle levels of seven magic nuclei are calculated within the Energy Density Functional (EDF) method by Fayans et al. Thr
We studied the complete dynamics of the proton-induced spallation process with the microscopic framework of the Constrained Molecular Dynamics (CoMD) Model. We performed calculations of proton-induced spallation reactions on 181Ta, 208Pb, and 238U ta rgets with the CoMD model and compared the results with a standard two-step approach based on an intranuclear cascade model (INC) followed by a statistical deexcitation model. The calculations were also compared with recent experimental data from the literature. Our calculations showed an overall satisfactory agreement with the experimental data and suggest further improvements in the models. We point out that this CoMD study represents the first complete dynamical description of spallation reactions with a microscopic N-body approach and may lead to advancements in the physics-based modelling of the spallation process.
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM$^*$ and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of $^{264}$Fm, where the effect of triaxiality on the fission barrier is large, the geometry of fission pathway in the space of shape degrees of freedom is weakly impacted by pairing. This is not the case for $^{240}$Pu where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
130 - P. Napolitani , M. Colonna 2016
We investigate the prompt emission of few intermediate-mass fragments in spallation reactions induced by protons and deuterons in the 1 GeV range. Such emission has a minor contribution to the total reaction cross section, but it may overcome evapora tion and fission channels in the formation of light nuclides. The role of mean-field dynamics and phase-space fluctuations in these reactions is investigated through the Boltzmann-Langevin transport equation. We found that a process of frustrated fragmentation and re-aggregation is a prominent mechanism of production of IMFs which can not be assimilated to the statistical decay of a compound nucleus. Very interestingly, this process may yield a small number of IMF in the exit channel, which may even reduce to two, and be wrongly confused with ordinary asymmetric fission. This interpretation, inspired by nuclear-spallation experiments, can be generalised to heavy-ion collisions approaching the fragmentation threshold.
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of $^{258}$Fm can be well reproduced using simple assumptions on the quantum collective phase-space explored by the nucleus after passing the fission barrier. Assumin g energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory. This approach goes beyond mean-field by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation of daughter nuclei as well as pre- and post-scission particle emission, are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا