ﻻ يوجد ملخص باللغة العربية
Octupole deformations and related collective excitations are analyzed using the framework of nuclear density functional theory. Axially-symmetric quadrupole-octupole constrained self-consistent mean-field (SCMF) calculations with a choice of universal energy density functional and a pairing interaction are performed for Xe, Ba, and Ce isotopes from proton-rich to neutron-rich regions, and neutron-rich Se, Kr, and Sr isotopes, in which enhanced octupole correlations are expected to occur. Low-energy positive- and negative-parity spectra and transition strengths are computed by solving the quadrupole-octupole collective Hamiltonian, with the inertia parameters and collective potential determined by the constrained SCMF calculations. Octupole-deformed equilibrium states are found in the potential energy surfaces of the Ba and Ce isotopes with $Napprox 56$ and 88. The evolution of spectroscopic properties indicates enhanced octupole correlations in the regions corresponding to $Napprox Zapprox 56$, $Zapprox 88$ and $Zapprox 56$, and $Napprox 56$ and $Zapprox 34$. The average $beta_{30}$ deformation parameter and its fluctuation exhibit signatures of octupole shape phase transition around $N=56$ and 88.
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfac
Background: Excitations with mixed proton-neutron symmetry have been previously observed in the $N=52$ isotones. Besides the well established quadrupole mixed-symmetry states (MSS), octupole and hexadecapole MSS have been recently proposed for the nu
The dynamics of nuclear collective motion is investigated in the case of reflection-asymmetric shapes. The model is based on a new parameterization of the octupole and quadrupole degrees of freedom, valid for nuclei close to the axial symmetry. Ampli
The $^8$Li($n,gamma$)$^9$Li reaction plays an important role in several astrophysics scenarios. It cannot be measured directly and indirect experiments have so far provided only cross section limits. Theoretical predictions differ by an order of magn
We discuss low-lying collective excitations of $Lambda$ hypernuclei using the self-consistent mean-field approaches. We first discuss the deformation properties of $Lambda$ hypernuclei in the $sd$-shell region. Based on the relativistic mean-field (R