ﻻ يوجد ملخص باللغة العربية
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $beta_{2}$-$beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for $beta_{3}$-soft potentials.
The evolution of quadrupole and octupole collectivity and their coupling is investigated in a series of even-even isotopes of the actinide Ra, Th, U, Pu, Cm, and Cf with neutron number in the interval $130leqslant Nleqslant 150$. The Hartree-Fock-Bog
``Beat patterns are shown to appear in the octupole bands of several actinides and rare earths, their appearance being independent from the formula used in order to isolate and demonstrate them. It is shown that the recent formalism, making use of di
The dynamics of nuclear collective motion is investigated in the case of reflection-asymmetric shapes. The model is based on a new parameterization of the octupole and quadrupole degrees of freedom, valid for nuclei close to the axial symmetry. Ampli
Octupole deformations and related collective excitations are analyzed using the framework of nuclear density functional theory. Axially-symmetric quadrupole-octupole constrained self-consistent mean-field (SCMF) calculations with a choice of universa
Fission of $^{180}$Hg produces mass asymmetric fragments which are expected to be influenced by deformed shell-effects at N=56 in the heavy fragment and Z=34 in the light fragment [G. Scamps and C. Simenel, arXiv:1904.01275 (2019)]. To investigate bo