ﻻ يوجد ملخص باللغة العربية
Given a regular subgroup R of AGL_n(F), one can ask if R contains nontrivial translations. A negative answer to this question was given by Liebeck, Praeger and Saxl for AGL_2(p) (p a prime), AGL_3(p) (p odd) and for AGL_4(2). A positive answer was given by Hegedus for AGL_n(p) when n >= 4 if p is odd and for n=3 or n >= 5 if p=2. A first generalization to finite fields of Hegedus construction was recently obtained by Catino, Colazzo and Stefanelli. In this paper we give examples of such subgroups in AGL_n(F) for any n >= 5 and any field F. For n < 5 we provide necessary and sufficient conditions for their existence, assuming R to be unipotent if char F=0.
This paper is a new contribution to the study of regular subgroups of the affine group $AGL_n(F)$, for any field $F$. In particular we associate to any partition $lambda eq (1^{n+1})$ of $n+1$ abelian regular subgroups in such a way that different pa
We count the finitely generated subgroups of the modular group $textsf{PSL}(2,mathbb{Z})$. More precisely: each such subgroup $H$ can be represented by its Stallings graph $Gamma(H)$, we consider the number of vertices of $Gamma(H)$ to be the size of
We show that finitely-generated, purely pseudo-Anosov subgroups of the genus-2 Goeritz group are convex cocompact in the genus-2 mapping class group.
In this paper, important concepts from finite group theory are translated to localities, in particular to linking localities. Here localities are group-like structures associated to fusion systems which were introduced by Chermak. Linking localities