ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of subgroups of the modular group

223   0   0.0 ( 0 )
 نشر من قبل Pascal Weil
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We count the finitely generated subgroups of the modular group $textsf{PSL}(2,mathbb{Z})$. More precisely: each such subgroup $H$ can be represented by its Stallings graph $Gamma(H)$, we consider the number of vertices of $Gamma(H)$ to be the size of $H$ and we count the subgroups of size $n$. Since an index $n$ subgroup has size $n$, our results generalize the known results on the enumeration of the finite index subgroups of $textsf{PSL}(2,mathbb{Z})$. We give asymptotic equivalents for the number of finitely generated subgroups of $textsf{PSL}(2,mathbb{Z})$, as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size $n$ subgroup and prove a large deviations statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size $n$ subgroup (resp. finite index subgroup, free subgroup) of $textsf{PSL}(2,mathbb{Z})$.

قيم البحث

اقرأ أيضاً

We show how to count and randomly generate finitely generated subgroups of the modular group $textsf{PSL}(2,mathbb{Z})$ of a given isomorphism type. We also prove that almost malnormality and non-parabolicity are negligible properties for these subgr oups. The combinatorial methods developed to achieve these results bring to light a natural map, which associates with any finitely generated subgroup of $textsf{PSL}(2,mathbb{Z})$ a graph which we call its silhouette, and which can be interpreted as a conjugacy class of free finite index subgroups of $textsf{PSL}(2,mathbb{Z})$.
89 - Gareth A. Jones 2018
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma ximal nonparabolic subgroups, that is, maximal with respect to containing no parabolic elements. We strengthen and extend this result by giving a simple construction using planar maps to show that for all integers $pge 3$, $qge 2$ the triangle group $Gamma=Delta(p,q,infty)cong C_p*C_q$ has uncountably many conjugacy classes of nonparabolic maximal subgroups. We also extend results of Tretkoff and of Brenner and Lyndon for the modular group by constructing uncountably many conjugacy classes of such subgroups of $Gamma$ which do not arise from Neumanns original method. These maximal subgroups are all generated by elliptic elements, of finite order, but a similar construction yields uncountably many conjugacy classes of torsion-free maximal subgroups of the Hecke groups $C_p*C_2$ for odd $pge 3$. Finally, an adaptation of work of Conder yields uncountably many conjugacy classes of maximal subgroups of $Delta(2,3,r)$ for all $rge 7$.
188 - Bena Tshishiku 2021
We show that finitely-generated, purely pseudo-Anosov subgroups of the genus-2 Goeritz group are convex cocompact in the genus-2 mapping class group.
Let $A$ be the ring of elements in an algebraic function field $K$ over a finite field $F_q$ which are integral outside a fixed place $infty$. In an earlier paper we have shown that the Drinfeld modular group $G=GL_2(A)$ has automorphisms which map c ongruence subgroups to non-congruence subgroups. Here we prove the existence of (uncountably many) normal genuine non-congruence subgroups, defined to be those which remain non-congruence under the action of every automorphism of $G$. In addition, for all but finitely many cases we evaluate $ngncs(G)$, the smallest index of a normal genuine non-congruence subgroup of $G$, and compare it to the minimal index of an arbitrary normal non-congruence subgroup.
Let FL_s(K) be the finitary linear group of degree s over an associative ring K with unity. We prove that the torsion subgroups of FL_s(K) are locally finite for certain classes of rings K. A description of some f.g. solvable subgroups of FL_s(K) are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا