ترغب بنشر مسار تعليمي؟ اضغط هنا

Affine reflection subgroups of Coxeter groups

179   0   0.0 ( 0 )
 نشر من قبل Xiang Fu Dr
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

130 - Koji Nuida 2010
Despite the significance of the notion of parabolic closures in Coxeter groups of finite ranks, the parabolic closure is not guaranteed to exist as a parabolic subgroup in a general case. In this paper, first we give a concrete example to clarify tha t the parabolic closure of even an irreducible reflection subgroup of countable rank does not necessarily exist as a parabolic subgroup. Then we propose a generalized notion of locally parabolic closure by introducing a notion of locally parabolic subgroups, which involves parabolic ones as a special case, and prove that the locally parabolic closure always exists as a locally parabolic subgroup. It is a subgroup of parabolic closure, and we give another example to show that the inclusion may be strict in general. Our result suggests that locally parabolic closure has more natural properties and provides more information than parabolic closure. We also give a result on maximal locally finite, locally parabolic subgroups in Coxeter groups, which generalizes a similar well-known fact on maximal finite parabolic subgroups.
86 - Vincent Beck 2017
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the ( complex) reflection group to lift to subgroups of this quotient. In the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.
156 - Koji Nuida 2012
It has been known that the centralizer $Z_W(W_I)$ of a parabolic subgroup $W_I$ of a Coxeter group $W$ is a split extension of a naturally defined reflection subgroup by a subgroup defined by a 2-cell complex $mathcal{Y}$. In this paper, we study the structure of $Z_W(W_I)$ further and show that, if $I$ has no irreducible components of type $A_n$ with $2 leq n < infty$, then every element of finite irreducible components of the inner factor is fixed by a natural action of the fundamental group of $mathcal{Y}$. This property has an application to the isomorphism problem in Coxeter groups.
Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the su percharacter theory of the finite unitriangular group, and prove that supercharacters are orthogonal and provide a partition of the set of all irreducible characters. We also describe all irreducible characters of maximum degree in terms of the root system, and show how they can be obtained as constituents of particular supercharacters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا