ترغب بنشر مسار تعليمي؟ اضغط هنا

Black holes and Higgs stability

155   0   0.0 ( 0 )
 نشر من قبل Nikolaos Tetradis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nikolaos Tetradis




اسأل ChatGPT حول البحث

We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

قيم البحث

اقرأ أيضاً

Eternally inflating universes lead to an infinite number of Boltzmann brains but also an infinite number of ordinary observers. If we use the scale factor measure to regularize these infinities, the ordinary observers dominate the Boltzmann brains if the vacuum decay rate of each vacuum is larger than its Boltzmann brain nucleation rate. Here we point out that nucleation of small black holes should be counted in the vacuum decay rate, and this rate is always larger than the Boltzmann brain rate, if the minimum Boltzmann brain mass is more than the Planck mass. We also discuss nucleation of small, rapidly inflating regions, which may also have a higher rate than Boltzmann brains. This process also affects the distribution of the different vacua in eternal inflation.
We investigate the effects of producing dark matter by Hawking evaporation of primordial black holes (PBHs) in scenarios that may have a second well-motivated dark matter production mechanism, such as freeze-out, freeze-in, or gravitational productio n. We show that the interplay between PBHs and the alternative sources of dark matter can give rise to model-independent modifications to the required dark matter abundance from each production mechanism, which in turn affect the prospects for dark matter detection. In particular, we demonstrate that for the freeze-out mechanism, accounting for evaporation of PBHs after freeze-out demands a larger annihilation cross section of dark matter particles than its canonical value for a thermal dark matter. For mechanisms lacking thermalization due to a feeble coupling to the thermal bath, we show that the PBH contribution to the dark matter abundance leads to the requirement of an even feebler coupling. Moreover, we show that when a large initial abundance of PBHs causes an early matter-dominated epoch, PBH evaporation alone cannot explain the whole abundance of dark matter today. In this case, an additional production mechanism is required, in contrast to the case when PBHs are formed and evaporate during a radiation-dominated epoch.
We derive the quadratic action for the physical degrees of freedom of massless spin-0, spin-1, and spin-2 perturbations on a Schwarzschild--(A)dS background in arbitrary dimensions. We then use these results to compute the static response of asymptot ically flat Schwarzschild black holes to external fields. Our analysis reproduces known facts about black hole Love numbers, in particular that they vanish for all types of perturbation in four spacetime dimensions, but also leads to new results. For instance, we find that neutral Schwarzschild black holes polarize in the presence of an electromagnetic background in any number of spacetime dimensions except four. Moreover, we calculate for the first time black hole Love numbers for vector-type gravitational perturbations in higher dimensions and find that they generically do not vanish. Along the way, we shed some light on an apparent discrepancy between previous results in the literature, and clarify some aspects of the matching between perturbative calculations of static response on a Schwarzschild background and the point-particle effective theory
The measured Standard Model parameters lie in a range such that the Higgs potential, once extrapolated up to high scales, develops a minimum of negative energy density. This has important cosmological implications. In particular, during inflation, qu antum fluctuations could have pushed the Higgs field beyond its potential barrier, triggering the formation of anti-de Sitter regions, with fatal consequences for our universe. By requiring that this did not happen, one can in principle connect (and constrain) Standard Model parameters with the energy scale of inflation. In this context, we highlight the sensitivity of the fate of our vacuum to seemingly irrelevant physics. In particular, the departure of inflation from an exact de Sitter phase, as well as Planck-suppressed derivative operators, can, already and surprisingly, play a decisive role in (de)stabilizing the Higgs during inflation. Furthermore, in the stochastic dynamics, we quantify the impact of the amplitude of the noise differing from the one of a massless field, as well as of going beyond the slow-roll approximation by using a phase-space approach. On a general ground, our analysis shows that relating the period of inflation to precision particle physics requires a knowledge of these irrelevant effects.
We show that accreting black hole systems could be sources for keV light dark matter flux through several different mechanisms. We discuss two types of systems: coronal thermal plasmas around supermassive black holes in active galactic nuclei (AGNs), and accretion disks of stellar-mass X-ray black hole binaries (BHBs). We explore how these black hole systems may produce keV light dark matter fluxes and find that in order to account for the XENON1T excess, the dark fluxes from the observed AGNs and BHBs sources have to exceed the Eddington limit. We also extend the black hole mass region to primordial black holes (PBHs) and discuss the possibility of contributing to keV light dark flux via superradiance or Hawking radiation of PBHs. Besides, black holes can be good accelerators to accrete and boost heavy dark matter particles. If considering collisions or dark electromagnetism, those particles could then escape and reach the benchmark speed of 0.1c at the XENON1T detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا