ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Primordial Black Holes on Dark Matter Models

142   0   0.0 ( 0 )
 نشر من قبل Barmak Shams Es Haghi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of producing dark matter by Hawking evaporation of primordial black holes (PBHs) in scenarios that may have a second well-motivated dark matter production mechanism, such as freeze-out, freeze-in, or gravitational production. We show that the interplay between PBHs and the alternative sources of dark matter can give rise to model-independent modifications to the required dark matter abundance from each production mechanism, which in turn affect the prospects for dark matter detection. In particular, we demonstrate that for the freeze-out mechanism, accounting for evaporation of PBHs after freeze-out demands a larger annihilation cross section of dark matter particles than its canonical value for a thermal dark matter. For mechanisms lacking thermalization due to a feeble coupling to the thermal bath, we show that the PBH contribution to the dark matter abundance leads to the requirement of an even feebler coupling. Moreover, we show that when a large initial abundance of PBHs causes an early matter-dominated epoch, PBH evaporation alone cannot explain the whole abundance of dark matter today. In this case, an additional production mechanism is required, in contrast to the case when PBHs are formed and evaporate during a radiation-dominated epoch.

قيم البحث

اقرأ أيضاً

163 - Ranjan Laha , Julian B. Mu~noz , 2020
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has yielded unprecedented measurements of the soft gamma-ray spectrum of our Galaxy. Here we use those measurements to set constraints on dark matter (DM) that decays or annihil ates into photons with energies $Eapprox 0.02-2$ MeV. First, we revisit the constraints on particle DM that decays or annihilates to photon pairs. In particular, for decaying DM, we find that previous limits were overstated by roughly an order of magnitude. Our new, conservative analysis finds that the DM lifetime must satisfy $taugtrsim 5times 10^{26},{rm s}times (m_{chi}/rm MeV)^{-1}$ for DM masses $m_{chi}=0.054-3.6$ MeV. For MeV-scale DM that annihilates into photons INTEGRAL sets the strongest constraints to date. Second, we target ultralight primordial black holes (PBHs) through their Hawking radiation. This makes them appear as decaying DM with a photon spectrum peaking at $Eapprox 5.77/(8pi G M_{rm PBH})$, for a PBH of mass $M_{rm PBH}$. We use the INTEGRAL data to demonstrate that, at 95% C.L., PBHs with masses less than $1.2times 10^{17}$ g cannot comprise all of the DM, setting the tightest bound to date on ultralight PBHs.
The direct detection of sub-GeV dark matter interacting with nucleons is hampered by to the low recoil energies induced by scatterings in the detectors. This experimental difficulty is avoided in the scenario of boosted dark matter where a component of dark matter particles is endowed with large kinetic energies. In this Letter, we point out that the current evaporation of primordial black holes with masses from $10^{14}$ to $10^{16}$ g is a source of boosted light dark matter with energies of tens to hundreds of MeV. Focusing on the XENON1T experiment, we show that these relativistic dark matter particles could give rise to a signal orders of magnitude larger than the present upper bounds. Therefore, we are able to significantly constrain the combined parameter space of primordial black holes and sub-GeV dark matter. In the presence of primordial black holes with a mass of $10^{15}~mathrm{g}$ and an abundance compatible with present bounds, the limits on DM-nucleon cross-section are improved by four orders of magnitude.
Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrino s emitted by PBHs evaporation can interact through the coherent elastic neutrino nucleus scattering (CE$ u$NS) producing an observable signal in multi-ton DM direct detection experiments. We show that with the high exposures envisaged for the next-generation facilities, it will be possible to set bounds on the fraction of DM composed by PBHs improving the existing neutrino limits obtained with Super-Kamiokande. We also quantify to what extent a signal originating from a small fraction of DM in the form of PBHs would modify the so-called neutrino floor, the well-known barrier towards detection of weakly interacting massive particles (WIMPs) as the dominant DM component.
We discuss formation of dark matter (DM) mini-halos around primordial black holes (PBHs) and its implication on DM direct detection experiments, including axion searches. Motivated by LIGO observations, we consider $f_{textrm{DM}} simeq 0.01$ as the fraction of DM in PBHs with masses $10 M_{odot} - 70 M_{odot}$. In this case, we expect the presence of dressed PBHs after Milky Way halo formation with mini-halo masses peaked around $M_{textrm{halo}} sim (50-55) M_{textrm{PBH}}$. We analyze the effect of tidal forces acting on dressed PBHs within the Milky Way galaxy. In the solar neighborhood, the mini-halos are resistant against tidal disruption from the mean-field potential of the galaxy and encounters with stars, but they undergo a small level of disruption caused by disk shocking. The presence of mini-halos around LIGO-motivated PBHs today could reduce by half the local dark matter background. High-resolution simulations are encouraged. If the proposed scenario is realized, chances of direct detection of DM would decrease.
100 - Isabella Masina 2021
The mechanism of the generation of dark matter and dark radiation from the evaporation of primordial black holes is very interesting. We consider the case of Kerr black holes to generalize previous results obtained in the Schwarzschild case. For dark matter, the results do not change dramatically and the bounds on warm dark matter apply similarly: in particular, the Kerr case cannot save the scenario of black hole domination for light dark matter. For dark radiation, the expectations for $Delta N_{eff}$ do not change significantly with respect to the Schwarzschild case, but for an enhancement in the case of spin 2 particles: in the massless case, however, the projected experimental sensitivity would be reached only for extremal black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا