ﻻ يوجد ملخص باللغة العربية
We derive the quadratic action for the physical degrees of freedom of massless spin-0, spin-1, and spin-2 perturbations on a Schwarzschild--(A)dS background in arbitrary dimensions. We then use these results to compute the static response of asymptotically flat Schwarzschild black holes to external fields. Our analysis reproduces known facts about black hole Love numbers, in particular that they vanish for all types of perturbation in four spacetime dimensions, but also leads to new results. For instance, we find that neutral Schwarzschild black holes polarize in the presence of an electromagnetic background in any number of spacetime dimensions except four. Moreover, we calculate for the first time black hole Love numbers for vector-type gravitational perturbations in higher dimensions and find that they generically do not vanish. Along the way, we shed some light on an apparent discrepancy between previous results in the literature, and clarify some aspects of the matching between perturbative calculations of static response on a Schwarzschild background and the point-particle effective theory
It is well known that asymptotically flat black holes in general relativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governing static (spin 0,1,2) perturbations around black h
It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise a
To perform realistic tests of theories of gravity, we need to be able to look beyond general relativity and evaluate the consistency of alternative theories with observational data from, especially, gravitational wave detections using, for example, a
Eternally inflating universes lead to an infinite number of Boltzmann brains but also an infinite number of ordinary observers. If we use the scale factor measure to regularize these infinities, the ordinary observers dominate the Boltzmann brains if