ﻻ يوجد ملخص باللغة العربية
The measured Standard Model parameters lie in a range such that the Higgs potential, once extrapolated up to high scales, develops a minimum of negative energy density. This has important cosmological implications. In particular, during inflation, quantum fluctuations could have pushed the Higgs field beyond its potential barrier, triggering the formation of anti-de Sitter regions, with fatal consequences for our universe. By requiring that this did not happen, one can in principle connect (and constrain) Standard Model parameters with the energy scale of inflation. In this context, we highlight the sensitivity of the fate of our vacuum to seemingly irrelevant physics. In particular, the departure of inflation from an exact de Sitter phase, as well as Planck-suppressed derivative operators, can, already and surprisingly, play a decisive role in (de)stabilizing the Higgs during inflation. Furthermore, in the stochastic dynamics, we quantify the impact of the amplitude of the noise differing from the one of a massless field, as well as of going beyond the slow-roll approximation by using a phase-space approach. On a general ground, our analysis shows that relating the period of inflation to precision particle physics requires a knowledge of these irrelevant effects.
We study the cosmology of a recent model of supersymmetry breaking, in the presence of a tuneable positive cosmological constant, based on a gauged shift symmetry of a string modulus that can be identified with the string dilaton. The minimal spectru
We study the cosmological properties of a metastable de Sitter vacuum obtained recently in the framework of type IIB flux compactifications in the presence of three D7-brane stacks, based on perturbative quantum corrections at both world-sheet and st
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those
The de Sitter constraint on the space of effective scalar field theories consistent with superstring theory provides a lower bound on the slope of the potential of a scalar field which dominates the evolution of the Universe, e.g., a hypothetical inf
We study the structure of multi-field inflation models where the primordial curvature perturbation is able to vigorously interact with an ultra-light isocurvature field -- a massless fluctuation orthogonal to the background inflationary trajectory in