ﻻ يوجد ملخص باللغة العربية
The AUV three-dimension path planning in complex turbulent underwater environment is investigated in this research, in which static current map data and uncertain static-moving time variant obstacles are taken into account. Robustness of AUVs path planning to this strong variability is known as a complex NP-hard problem and is considered a critical issue to ensure vehicles safe deployment. Efficient evolutionary techniques have substantial potential of handling NP hard complexity of path planning problem as more powerful and fast algorithms among other approaches for mentioned problem. For the purpose of this research Differential Evolution (DE) technique is conducted to solve the AUV path planning problem in a realistic underwater environment. The path planners designed in this paper are capable of extracting feasible areas of a real map to determine the allowed spaces for deployment, where coastal area, islands, static/dynamic obstacles and ocean current is taken into account and provides the efficient path with a small computation time. The results obtained from analyze of experimental demonstrate the inherent robustness and drastic efficiency of the proposed scheme in enhancement of the vehicles path planning capability in coping undesired current, using useful current flow, and avoid colliding collision boundaries in a real-time manner. The proposed approach is also flexible and strictly respects to vehicles kinematic constraints resisting current instabilities.
This paper presents a solution to Autonomous Underwater Vehicles (AUVs) large scale route planning and task assignment joint problem. Given a set of constraints (e.g., time) and a set of task priority values, the goal is to find the optimal route for
Providing a higher level of decision autonomy and accompanying prompt changes of an uncertain environment is a true challenge of AUVs autonomous operations. The proceeding approach introduces a robust reactive structure that accommodates an AUVs miss
Autonomous Underwater Vehicle-Manipulator systems (AUVMS) is a new tool for ocean exploration, the AUVMS path planning problem is addressed in this paper. AUVMS is a high dimension system with a large difference in inertia distribution, also it works
Estimating ocean flow fields in 3D is a critical step in enabling the reliable operation of underwater gliders and other small, low-powered autonomous marine vehicles. Existing methods produce depth-averaged 2D layers arranged at discrete vertical in
Rapidly-exploring Random Tree Star(RRT*) is a recently proposed extension of Rapidly-exploring Random Tree (RRT) algorithm that provides a collision-free, asymptotically optimal path regardless of obstacles geometry in a given environment. However, o