ﻻ يوجد ملخص باللغة العربية
Providing a higher level of decision autonomy and accompanying prompt changes of an uncertain environment is a true challenge of AUVs autonomous operations. The proceeding approach introduces a robust reactive structure that accommodates an AUVs mission planning, task-time management in a top level and incorporates environmental changes by a synchronic motion planning in a lower level. The proposed architecture is developed in a hierarchal modular format and a bunch of evolutionary algorithms are employed by each module to investigate the efficiency and robustness of the structure in different mission scenarios while water current data, uncertain static-mobile/motile obstacles, and vehicles Kino-dynamic constraints are taken into account. The motion planner is facilitated with online re-planning capability to refine the vehicles trajectory based on local variations of the environment. A small computational load is devoted for re-planning procedure since the upper layer mission planner renders an efficient overview of the operation area that AUV should fly thru. Numerical simulations are carried out to investigate robustness and performance of the architecture in different situations of a real-world underwater environment. Analysis of the simulation results claims the remarkable capability of the proposed model in accurate mission task-time-threat management while guarantying a secure deployment during the mission.
The AUV three-dimension path planning in complex turbulent underwater environment is investigated in this research, in which static current map data and uncertain static-moving time variant obstacles are taken into account. Robustness of AUVs path pl
In this paper, we show how a planning algorithm can be used to automatically create and update a Behavior Tree (BT), controlling a robot in a dynamic environment. The planning part of the algorithm is based on the idea of back chaining. Starting from
Path planning has long been one of the major research areas in robotics, with PRM and RRT being two of the most effective classes of path planners. Though generally very efficient, these sampling-based planners can become computationally expensive in
Collision avoidance is an essential concern for the autonomous operations of aerial vehicles in dynamic and uncertain urban environments. This paper introduces a risk-bounded path planning algorithm for unmanned aerial vehicles (UAVs) operating in su
This paper presents a solution to Autonomous Underwater Vehicles (AUVs) large scale route planning and task assignment joint problem. Given a set of constraints (e.g., time) and a set of task priority values, the goal is to find the optimal route for