ﻻ يوجد ملخص باللغة العربية
This paper presents a solution to Autonomous Underwater Vehicles (AUVs) large scale route planning and task assignment joint problem. Given a set of constraints (e.g., time) and a set of task priority values, the goal is to find the optimal route for underwater mission that maximizes the sum of the priorities and minimizes the total risk percentage while meeting the given constraints. Making use of the heuristic nature of genetic and swarm intelligence algorithms in solving NP-hard graph problems, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are employed to find the optimum solution, where each individual in the population is a candidate solution (route). To evaluate the robustness of the proposed methods, the performance of the all PS and GA algorithms are examined and compared for a number of Monte Carlo runs. Simulation results suggest that the routes generated by both algorithms are feasible and reliable enough, and applicable for underwater motion planning. However, the GA-based route planner produces superior results comparing to the results obtained from the PSO based route planner.
The AUV three-dimension path planning in complex turbulent underwater environment is investigated in this research, in which static current map data and uncertain static-moving time variant obstacles are taken into account. Robustness of AUVs path pl
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environments. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation of different approaches. In contrast, TMP for navi
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environment. Autonomous robots operating in real world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In k
Robotic planning problems in hybrid state and action spaces can be solved by integrated task and motion planners (TAMP) that handle the complex interaction between motion-level decisions and task-level plan feasibility. TAMP approaches rely on domain
Rapidly-exploring Random Tree Star(RRT*) is a recently proposed extension of Rapidly-exploring Random Tree (RRT) algorithm that provides a collision-free, asymptotically optimal path regardless of obstacles geometry in a given environment. However, o