ترغب بنشر مسار تعليمي؟ اضغط هنا

pi-flux Dirac bosons and topological edge excitations in a bosonic chiral p-wave superfluid

63   0   0.0 ( 0 )
 نشر من قبل Zhifang Xu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the topological properties of elementary excitations in a staggered $p_x pm i p_y$ Bose-Einstein condensate realized in recent orbital optical lattice experiments. The condensate wave function may be viewed as a configuration space variant of the famous $p_x+ ip_y$ momentum space order parameter of strontium ruthenate superconductors. We show that its elementary excitation spectrum possesses Dirac bosons with $pi$ Berry flux. Remarkably, if we induce a population imbalance between the $p_x+ip_y$ and $p_x-ip_y$ condensate components, a gap opens up in the excitation spectrum resulting in a nonzero Chern invariant and topologically protected edge excitation modes. We give a detailed description on how our proposal can be implemented with standard experimental technology.

قيم البحث

اقرأ أيضاً

We present an exactly-solvable $p$-wave pairing model for two bosonic species. The model is solvable in any spatial dimension and shares some commonalities with the $p + ip$ Richardson-Gaudin fermionic model, such as a third order quantum phase trans ition. However, contrary to the fermionic case, in the bosonic model the transition separates a gapless fragmented singlet pair condensate from a pair Bose superfluid, and the exact eigenstate at the quantum critical point is a pair condensate analogous to the fermionic Moore-Read state.
Sliding phases have been long sought after in the context of coupled XY-models, as they are of relevance to various many-body systems such as layered superconductors, freestanding liquid-crystal films, and cationic lipid-DNA complexes. Here we report an observation of a dynamical sliding phase superfluid that emerges in a nonequilibrium setting from the quantum dynamics of a three-dimensional ultracold atomic gas loaded into the P-band of a one-dimensional optical lattice. A shortcut loading method is used to transfer atoms into the P-band at zero quasimomentum within a very short time duration. The system can be viewed as a series of pancake-shaped atomic samples. For this far-out-of-equilibrium system, we find an intermediate time window with a lifetime around tens of milliseconds, where the atomic ensemble exhibits robust superfluid phase coherence in the pancake directions, but no coherence in the lattice direction, which implies a dynamical sliding phase superfluid. The emergence of the sliding phase is attributed to a mechanism of cross-dimensional energy transfer in our proposed phenomenological theory, which is consistent with experimental measurements. This experiment potentially opens up a novel venue to search for exotic dynamical phases by creating high-band excitations in optical lattices.
We investigate the interaction-driven instability of a quadratic band crossing arising for ultracold bosonic atoms loaded into a two-dimensional optical lattice. We consider the case when the degenerate point becomes a local minimum of both crossing energy bands such that it can support a stable Bose-Einstein condensate. Repulsive contact interaction among the condensed bosons induces a spontaneously time-reversal symmetry broken superfluid phase and a topological gap is opened in the excitation spectrum. We propose two concrete realizations of the desired quadratic band crossing in lattices with either fourfold or sixfold rotational symmetries via suitable tuning of the unit cell leading to reduced Brillouin zones and correspondingly folded bands. In either case, topologically protected edge excitations are found for a finite system.
We study a continuum model of the weakly interacting Bose gas in the presence of an external field with minima forming a triangular lattice. The second lowest band of the single-particle spectrum ($p$-band) has three minima at non-zero momenta. We co nsider a metastable Bose condensate at these momenta and find that, in the presence of interactions that vary slowly over the lattice spacing, the order parameter space is isomorphic to $S^{5}$. We show that the enlarged symmetry leads to the loss of topologically stable vortices, as well as two extra gapless modes with quadratic dispersion. The former feature implies that this non-Abelian condensate is a failed superfluid that does not undergo a Berezinskii-Kosterlitz-Thouless (BKT) transition. Order-by-disorder splitting appears suppressed, implying that signatures of the $S^5$ manifold ought to be observable at low temperatures.
The breaking of time reversal symmetry via the spontaneous formation of chiral order is ubiquitous in nature. Here, we present an unambiguous demonstration of this phenomenon for atoms Bose-Einstein condensed in the second Bloch band of an optical la ttice. As a key tool we use a matter wave interference technique, which lets us directly observe the phase properties of the superfluid order parameter and allows us to reconstruct the spatial geometry of certain low energy excitations, associated with the formation of domains of different chirality. Our work marks a new era of optical lattices where orbital degrees of freedom play an essential role for the formation of exotic quantum matter, similarly as in electronic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا