ﻻ يوجد ملخص باللغة العربية
The breaking of time reversal symmetry via the spontaneous formation of chiral order is ubiquitous in nature. Here, we present an unambiguous demonstration of this phenomenon for atoms Bose-Einstein condensed in the second Bloch band of an optical lattice. As a key tool we use a matter wave interference technique, which lets us directly observe the phase properties of the superfluid order parameter and allows us to reconstruct the spatial geometry of certain low energy excitations, associated with the formation of domains of different chirality. Our work marks a new era of optical lattices where orbital degrees of freedom play an essential role for the formation of exotic quantum matter, similarly as in electronic systems.
The phenomenon of metastability can shape dynamical processes on all temporal and spatial scales. Here, we induce metastable dynamics by pumping ultracold bosonic atoms from the lowest band of an optical lattice to an excitation band, via a sudden qu
We study a continuum model of the weakly interacting Bose gas in the presence of an external field with minima forming a triangular lattice. The second lowest band of the single-particle spectrum ($p$-band) has three minima at non-zero momenta. We co
The study of superconductivity with unconventional order is complicated in condensed matter systems by their extensive complexity. Optical lattices with their exceptional precision and control allow one to emulate superfluidity avoiding many of the c
We study the topological properties of elementary excitations in a staggered $p_x pm i p_y$ Bose-Einstein condensate realized in recent orbital optical lattice experiments. The condensate wave function may be viewed as a configuration space variant o
We establish that matter-wave interference at near-resonant ultraviolet optical gratings can be used to spatially separate individual conformers of complex molecules. Our calculations show that the conformational purity of the prepared beam can be cl