ﻻ يوجد ملخص باللغة العربية
We present an exactly-solvable $p$-wave pairing model for two bosonic species. The model is solvable in any spatial dimension and shares some commonalities with the $p + ip$ Richardson-Gaudin fermionic model, such as a third order quantum phase transition. However, contrary to the fermionic case, in the bosonic model the transition separates a gapless fragmented singlet pair condensate from a pair Bose superfluid, and the exact eigenstate at the quantum critical point is a pair condensate analogous to the fermionic Moore-Read state.
We study the topological properties of elementary excitations in a staggered $p_x pm i p_y$ Bose-Einstein condensate realized in recent orbital optical lattice experiments. The condensate wave function may be viewed as a configuration space variant o
Understanding superfluidity with higher order partial waves is crucial for the understanding of high-$T_c$ superconductivity. For the realization of a superfluid with anisotropic order parameter, spin-polarized fermionic lithium atoms with strong p-w
We study a continuum model of the weakly interacting Bose gas in the presence of an external field with minima forming a triangular lattice. The second lowest band of the single-particle spectrum ($p$-band) has three minima at non-zero momenta. We co
We calculate the superfluid weight and the polarization amplitude for the one-dimensional bosonic Hubbard model focusing on the strong-coupling regime. Other than analytic calculations we apply two methods: variational Monte Carlo based on the Baeris
We demonstrate many-body multifractality of the Bose-Hubbard Hamiltonians ground state in Fock space, for arbitrary values of the interparticle interaction. Generalized fractal dimensions unambiguously signal, even for small system sizes, the emergen