ترغب بنشر مسار تعليمي؟ اضغط هنا

Delocalization and quantum chaos in atom-field systems

94   0   0.0 ( 0 )
 نشر من قبل Miguel Bastarrachea-Magnani
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Employing efficient diagonalization techniques, we perform a detailed quantitative study of the regular and chaotic regions in phase space in the simplest non-integrable atom-field system, the Dicke model. A close correlation between the classical Lyapunov exponents and the quantum Participation Ratio of coherent states on the eigenenergy basis is exhibited for different points in the phase space. It is also shown that the Participation Ratio scales linearly with the number of atoms in chaotic regions, and with its square root in the regular ones.

قيم البحث

اقرأ أيضاً

The non-integrable Dicke model and its integrable approximation, the Tavis-Cummings (TC) model, are studied as functions of both the coupling constant and the excitation energy. The present contribution extends the analysis presented in the previous paper by focusing on the statistical properties of the quantum fluctuations in the energy spectrum and their relation with the excited state quantum phase transitions (ESQPT). These properties are compared with the dynamics observed in the semi-classica
The relation between the onset of chaos and critical phenomena, like Quantum Phase Transitions (QPT) and Excited-State Quantum Phase transitions (ESQPT), is analyzed for atom-field systems. While it has been speculated that the onset of hard chaos is associated with ESQPT based in the resonant case, the off-resonant cases show clearly that both phenomena, ESQPT and chaos, respond to different mechanisms. The results are supported in a detailed numerical study of the dynamics of the semiclassical Hamiltonian of the Dicke model. The appearance of chaos is quantified calculating the largest Lyapunov exponent for a wide sample of initial conditions in the whole available phase space for a given energy. The percentage of the available phase space with chaotic trajectories is evaluated as a function of energy and coupling between the qubit and bosonic part, allowing to obtain maps in the space of coupling and energy, where ergodic properties are observed in the model. Different sets of Hamiltonian parameters are considered, including resonant and off-resonant cases.
130 - Yochai Werman 2020
A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the L yapunov spectrum of the semiclassical theory approximating the quantum dynamics of a strongly interacting Rydberg atom array, which lead to periodic motion. In addition, we calculate the effect of quantum fluctuations around this approximation, and obtain the escape rate from the periodic orbit. We compare this rate to the rate extracted from the exact solution of the quantum theory, and find an order of magnitude discrepancy. We conclude that in this case, chaos in the TDVP equations does not correpond to phsyical properties of the system. Our result complement those of Ho et al. regarding the escape rate from the semiclassical periodic orbit.
The thermodynamical properties of a generalized Dicke model are calculated and related with the critical properties of its energy spectrum, namely the quantum phase transitions (QPT) and excited state quantum phase transitions (ESQPT). The thermal pr operties are calculated both in the canonical and the microcanonical ensembles. The latter deduction allows for an explicit description of the relation between thermal and energy spectrum properties. While in an isolated system the subspaces with different pseudo spin are disconnected, and the whole energy spectrum is accesible, in the thermal ensamble the situation is radically different. The multiplicity of the lowest energy states for each pseudo spin completely dominates the thermal behavior, making the set of degenerate states with the smallest pseudo spin at a given energy the only ones playing a role in the thermal properties, making the positive energy states thermally inaccesible. Their quantum phase transitions, from a normal to a superradiant phase, are closely associated with the thermal transition. The other critical phenomena, the ESQPTs occurring at excited energies, have no manifestation in the thermodynamics, although their effects could be seen in finite sizes corrections. A new superradiant phase is found, which only exists in the generalized model, and can be relevant in finite size systems.
81 - Guang Ping He 2017
Quantum steering means that in some bipartite quantum systems, the local measurements on one side can determine the state of the other side. Here we show that in high-dimensional systems, there exists a specific entangled state which can display a ki nd of chaos effect when being adopted for steering. That is, a subtle difference in the measurement results on one side can steer the other side into completely orthogonal states. Moreover, by expanding the result to infinite-dimensional systems, we find two sets of states for which, contrary to common belief, even though their density matrices approach being identical, the steering between them is impossible. This property makes them very useful for quantum cryptography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا