ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical chaos in atom-field systems

256   0   0.0 ( 0 )
 نشر من قبل Sergio Lerma-Hernandez
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relation between the onset of chaos and critical phenomena, like Quantum Phase Transitions (QPT) and Excited-State Quantum Phase transitions (ESQPT), is analyzed for atom-field systems. While it has been speculated that the onset of hard chaos is associated with ESQPT based in the resonant case, the off-resonant cases show clearly that both phenomena, ESQPT and chaos, respond to different mechanisms. The results are supported in a detailed numerical study of the dynamics of the semiclassical Hamiltonian of the Dicke model. The appearance of chaos is quantified calculating the largest Lyapunov exponent for a wide sample of initial conditions in the whole available phase space for a given energy. The percentage of the available phase space with chaotic trajectories is evaluated as a function of energy and coupling between the qubit and bosonic part, allowing to obtain maps in the space of coupling and energy, where ergodic properties are observed in the model. Different sets of Hamiltonian parameters are considered, including resonant and off-resonant cases.



قيم البحث

اقرأ أيضاً

The non-integrable Dicke model and its integrable approximation, the Tavis-Cummings (TC) model, are studied as functions of both the coupling constant and the excitation energy. The present contribution extends the analysis presented in the previous paper by focusing on the statistical properties of the quantum fluctuations in the energy spectrum and their relation with the excited state quantum phase transitions (ESQPT). These properties are compared with the dynamics observed in the semi-classica
The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum signature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This quantum-classical correspondence has b een corroborated for the kicked rotor and the stadium billiard, which are one-body chaotic systems. The conjecture has not yet been validated for realistic systems with interactions. We make progress in this direction by studying the OTOC in the Dicke model, where two-level atoms cooperatively interact with a quantized radiation field. For parameters where the model is chaotic in the classical limit, the OTOC increases exponentially in time with a rate that closely follows the classical Lyapunov exponent.
Employing efficient diagonalization techniques, we perform a detailed quantitative study of the regular and chaotic regions in phase space in the simplest non-integrable atom-field system, the Dicke model. A close correlation between the classical Ly apunov exponents and the quantum Participation Ratio of coherent states on the eigenenergy basis is exhibited for different points in the phase space. It is also shown that the Participation Ratio scales linearly with the number of atoms in chaotic regions, and with its square root in the regular ones.
122 - Bertin Many Manda 2021
We study the chaotic behavior of multidimensional Hamiltonian systems in the presence of nonlinearity and disorder. It is known that any localized initial excitation in a large enough linear disordered system spreads for a finite amount of time and t hen halts forever. This phenomenon is called Anderson localization (AL). What happens to AL when nonlinearity is introduced is an interesting question which has been considered in several studies over the past decades. However, the characteristics and the asymptotic fate of such evolutions still remain an issue of intense debate due to their computational difficulty, especially in systems of more than one spatial dimension. As the spreading of initially localized wave packets is a non-equilibrium thermalization process related to the ergodic and chaotic properties of the system, in our work we investigate the properties of chaos studying the behavior of observables related to the systems tangent dynamics. In particular, we consider the disordered discrete nonlinear Schrodinger (DDNLS) equation of one (1D) and two (2D) spatial dimensions. We present detailed computations of the time evolution of the systems maximum Lyapunov exponent (MLE--$Lambda$), and the related deviation vector distribution (DVD). We find that although the systems MLE decreases in time following a power law $t^{alpha_Lambda}$ with $alpha_Lambda <0$ for both the weak and strong chaos regimes, no crossover to the behavior $Lambda propto t^{-1}$ (which is indicative of regular motion) is observed. In addition, the analysis of the DVDs reveals the existence of random fluctuations of chaotic hotspots with increasing amplitudes inside the excited part of the wave packet, which assist in homogenizing chaos and contribute to the thermalization of more lattice sites.
We study the non-integrable Dicke model, and its integrable approximation, the Tavis-Cummings model, as functions of both the coupling constant and the excitation energy. Excited-state quantum phase transitions (ESQPT) are found analyzing the density of states in the semi-classical limit and comparing it with numerical results for the quantum case in large Hilbert spaces, taking advantage of efficient methods recently developed. Two different ESQPTs are identified in both models, which are signaled as singularities in the semi-classical density of states, one {em static} ESQPT occurs for any coupling, whereas a dynamic ESQPT is observed only in the superradiant phase. The role of the unstable fixed points of the Hamiltonian semi-classical flux in the occurrence of the ESQPTs is discussed and determined. Numerical evidence is provided that shows that the semi-classical result describes very well the tendency of the quantum energy spectrum for any coupling in both models. Therefore the semi-classical density of states can be used to study the statistical properties of the fluctuation in the spectra, a study that is presented in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا