ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanomechanical detection of the spin Hall effect

103   0   0.0 ( 0 )
 نشر من قبل Joseph Boales
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin Hall effect creates a spin current in response to a charge current in a material that has strong spin-orbit coupling. The size of the spin Hall effect in many materials is disputed, requiring independent measurements of the effect. We develop a novel mechanical method to measure the size of the spin Hall effect, relying on the equivalence between spin and angular momentum. The spin current carries angular momentum, so the flow of angular momentum will result in a mechanical torque on the material. We determine the size and geometry of this torque and demonstrate that it can be measured using a nanomechanical device. Our results show that measurement of the spin Hall effect in this manner is possible and also opens possibilities for actuating nanomechanical systems with spin currents.


قيم البحث

اقرأ أيضاً

Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is ex cited in a yttrium-iron garnet (YIG) waveguide by a microwave signal and is detected at a distance of 3 mm by an attached Pt layer as a delayed ISHE voltage pulse. The delay in the detection appears due to the finite spin-wave group velocity and proves the magnon spin transport. The experiment suggests utilization of spin waves for the information transfer over macroscopic distances in spintronic devices and circuits.
An intriguing feature of spintronics is the use of pure spin-currents to manipulate magnetization, e.g., spin-currents can switch magnetization in spin-torque MRAM, a next-generation DRAM alternative. Giant spin-currents via the spin Hall effect grea tly expand the technological opportunities. Conversely, a ferromagnet/normal metal junction emits spin-currents under microwave excitation, i.e. spin-pumping. While such spin-currents are modulated at the excitation frequency, there is also a non-linear, rectified component that is commonly detected using the corresponding inverse spin Hall effect (iSHE) dc voltage. However, the ac component should be more conducive for quantitative analysis, as it is up to two orders of magnitude larger and linear. But any device that uses the ac iSHE is also sensitive to inductive signals via Faradays Law and discrimination of the ac iSHE signal must rely on phase-sensitive measurements. We use the inductive signal as a reference for a quantitative measurement of the magnitude and phase of the ac iSHE.
142 - W. Y. Deng , Y. J. Ren , Z. X. Lin 2016
We develop an analytical theory of the low-frequency $ac$ quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the $ac$ QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is c onserved, the integer-quantized $ac$ spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological $ac$ spin current by electrical means.
Spin transistors and spin Hall effects have been two separate leading directions of research in semiconductor spintronics which seeks new paradigms for information processing technologies. We have brought the two directions together to realize an all -semiconductor spin Hall effect transistor. Our scheme circumvents semiconductor-ferromagnet interface problems of the original Datta-Das spin transistor concept and demonstrates the utility of the spin Hall effects in microelectronics. The devices use diffusive transport and operate without electrical current, i.e., without Joule heating in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our experimental study is complemented by numerical Monte Carlo simulations of spin-diffusion through the transistor channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا