ﻻ يوجد ملخص باللغة العربية
We consider the problem of minimizing the number of broadcasts for collecting all sensor measurements at a sink node in a noisy broadcast sensor network. Focusing first on arbitrary network topologies, we provide (i) fundamental limits on the required number of broadcasts of data gathering, and (ii) a general in-network computing strategy to achieve an upper bound within factor $log N$ of the fundamental limits, where $N$ is the number of agents in the network. Next, focusing on two example networks, namely, textcolor{black}{arbitrary geometric networks and random Erd$ddot{o}$s-R$acute{e}$nyi networks}, we provide improved in-network computing schemes that are optimal in that they attain the fundamental limits, i.e., the lower and upper bounds are tight textcolor{black}{in order sense}. Our main techniques are three distributed encoding techniques, called graph codes, which are designed respectively for the above-mentioned three scenarios. Our work thus extends and unifies previous works such as those of Gallager [1] and Karamchandani~emph{et. al.} [2] on number of broadcasts for distributed function computation in special network topologies, while bringing in novel techniques, e.g., from error-control coding and noisy circuits, for both upper and lower bounds.
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas
Random linear network codes can be designed and implemented in a distributed manner, with low computational complexity. However, these codes are classically implemented over finite fields whose size depends on some global network parameters (size of
Short message noisy network coding (SNNC) differs from long message noisy network coding (LNNC) in that one transmits many short messages in blocks rather than using one long message with repetitive encoding. Several properties of SNNC are developed.
This chapter deals with the topic of designing reliable and efficient codes for the storage and retrieval of large quantities of data over storage devices that are prone to failure. For long, the traditional objective has been one of ensuring reliabi
A Viterbi-like decoding algorithm is proposed in this paper for generalized convolutional network error correction coding. Different from classical Viterbi algorithm, our decoding algorithm is based on minimum error weight rather than the shortest Ha