ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Decoding of Convolutional Network Error Correction Codes

195   0   0.0 ( 0 )
 نشر من قبل Hengjie Yang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A Viterbi-like decoding algorithm is proposed in this paper for generalized convolutional network error correction coding. Different from classical Viterbi algorithm, our decoding algorithm is based on minimum error weight rather than the shortest Hamming distance between received and sent sequences. Network errors may disperse or neutralize due to network transmission and convolutional network coding. Therefore, classical decoding algorithm cannot be employed any more. Source decoding was proposed by multiplying the inverse of network transmission matrix, where the inverse is hard to compute. Starting from the Maximum A Posteriori (MAP) decoding criterion, we find that it is equivalent to the minimum error weight under our model. Inspired by Viterbi algorithm, we propose a Viterbi-like decoding algorithm based on minimum error weight of combined error vectors, which can be carried out directly at sink nodes and can correct any network errors within the capability of convolutional network error correction codes (CNECC). Under certain situations, the proposed algorithm can realize the distributed decoding of CNECC.



قيم البحث

اقرأ أيضاً

In this paper, we study sliding window decoding of braided convolutional codes (BCCs) in the context of a streaming application, where decoder error propagation can be a serious problem. A window extension algorithm and a resynchronization mechanism are introduced to mitigate the effect of error propagation. In addition, we introduce a soft bit-error-rate stopping rule to reduce computational complexity, and the tradeoff between performance and complexity is examined. Simulation results show that, using the proposed window extension algorithm and resynchronization mechanism, the error performance of BCCs can be improved by up to three orders of magnitude with reduced computational complexity.
We investigate error propagation in sliding window decoding of braided convolutional codes (BCCs). Previous studies of BCCs have focused on iterative decoding thresholds, minimum distance properties, and their bit error rate (BER) performance at smal l to moderate frame length. Here, we consider a sliding window decoder in the context of large frame length or one that continuously outputs blocks in a streaming fashion. In this case, decoder error propagation, due to the feedback inherent in BCCs, can be a serious problem.In order to mitigate the effects of error propagation, we propose several schemes: a emph{window extension algorithm} where the decoder window size can be extended adaptively, a resynchronization mechanism where we reset the encoder to the initial state, and a retransmission strategy where erroneously decoded blocks are retransmitted. In addition, we introduce a soft BER stopping rule to reduce computational complexity, and the tradeoff between performance and complexity is examined. Simulation results show that, using the proposed window extension algorithm, resynchronization mechanism, and retransmission strategy, the BER performance of BCCs can be improved by up to four orders of magnitude in the signal-to-noise ratio operating range of interest, and in addition the soft BER stopping rule can be employed to reduce computational complexity.
In this work it is shown that locally repairable codes (LRCs) can be list-decoded efficiently beyond the Johnson radius for a large range of parameters by utilizing the local error-correction capabilities. The corresponding decoding radius is derived and the asymptotic behavior is analyzed. A general list-decoding algorithm for LRCs that achieves this radius is proposed along with an explicit realization for LRCs that are subcodes of Reed--Solomon codes (such as, e.g., Tamo--Barg LRCs). Further, a probabilistic algorithm of low complexity for unique decoding of LRCs is given and its success probability is analyzed. The second part of this work considers error decoding of LRCs and partial maximum distance separable (PMDS) codes through interleaved decoding. For a specific class of LRCs the success probability of interleaved decoding is investigated. For PMDS codes, it is shown that there is a wide range of parameters for which interleaved decoding can increase their decoding radius beyond the minimum distance such that the probability of successful decoding approaches $1$ when the code length goes to infinity.
Staircase codes play an important role as error-correcting codes in optical communications. In this paper, a low-complexity method for resolving stall patterns when decoding staircase codes is described. Stall patterns are the dominating contributor to the error floor in the original decoding method. Our improvement is based on locating stall patterns by intersecting non-zero syndromes and flipping the corresponding bits. The approach effectively lowers the error floor and allows for a new range of block sizes to be considered for optical communications at a certain rate or, alternatively, a significantly decreased error floor for the same block size. Further, an improved error floor analysis is introduced which provides a more accurate estimation of the contributions to the error floor.
We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا