ﻻ يوجد ملخص باللغة العربية
This chapter deals with the topic of designing reliable and efficient codes for the storage and retrieval of large quantities of data over storage devices that are prone to failure. For long, the traditional objective has been one of ensuring reliability against data loss while minimizing storage overhead. More recently, a third concern has surfaced, namely of the need to efficiently recover from the failure of a single storage unit, corresponding to recovery from the erasure of a single code symbol. We explain here, how coding theory has evolved to tackle this fresh challenge.
This paper aims to go beyond resilience into the study of security and local-repairability for distributed storage systems (DSS). Security and local-repairability are both important as features of an efficient storage system, and this paper aims to u
In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios, the stored data or a content of a failed node c
We study the secrecy of a distributed storage system for passwords. The encoder, Alice, observes a length-n password and describes it using two hints, which she then stores in different locations. The legitimate receiver, Bob, observes both hints. Th
Distributed computation is a framework used to break down a complex computational task into smaller tasks and distributing them among computational nodes. Erasure correction codes have recently been introduced and have become a popular workaround to
In a distributed storage system, code symbols are dispersed across space in nodes or storage units as opposed to time. In settings such as that of a large data center, an important consideration is the efficient repair of a failed node. Efficient rep