ﻻ يوجد ملخص باللغة العربية
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcast constraints. The polarization-based codes achieve rates on the boundary of the private-message capacity region. For two-user noisy broadcast channels, polar implementations are presented for two information-theoretic schemes: i) Covers superposition codes; ii) Martons codes. Due to the structure of polarization, constraints on the auxiliary and channel-input distributions are identified to ensure proper alignment of polarization indices in the multi-user setting. The codes achieve rates on the capacity boundary of a few classes of broadcast channels (e.g., binary-input stochastically degraded). The complexity of encoding and decoding is $O(n*log n)$ where $n$ is the block length. In addition, polar code sequences obtain a stretched-exponential decay of $O(2^{-n^{beta}})$ of the average block error probability where $0 < beta < 0.5$.
We present a rate-compatible polar coding scheme that achieves the capacity of any family of channels. Our solution generalizes the previous results [1], [2] that provide capacity-achieving rate-compatible polar codes for a degraded family of channel
This paper presents a coding scheme for an insertion deletion substitution channel. We extend a previous scheme for the deletion channel where polar codes are modified by adding guard bands between segments. In the new scheme, each guard band is comp
This work concerns the behavior of good (capacity achieving) codes in several multi-user settings in the Gaussian regime, in terms of their minimum mean-square error (MMSE) behavior. The settings investigated in this context include the Gaussian wire
A broadcast channel (BC) where the decoders cooperate via a one-sided link is considered. One common and two private messages are transmitted and the private message to the cooperative user should be kept secret from the cooperation-aided user. The s
A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity