ﻻ يوجد ملخص باللغة العربية
In this paper we set up a bivariate representation of partial theta functions which not only unifies some famous identities for partial theta functions due to Andrews and Warnaar, et al. but also unveils a new characteristic of such identities. As further applications, we establish a general form of Warnaars identity and a general $q$--series transformation associated with Bailey pairs via the use of the power series expansion of partial theta functions.
In this paper, by the method of comparing coefficients and the inverse technique, we establish the corresponding variate forms of two identities of Andrews and Yee for mock theta functions, as well as a few allied but unusual $q$-series identities. A
In this article, we prove a new general identity involving the Theta operators introduced by the first author and his collaborators in [DAdderio, Iraci, Vanden Wyngaerd 2020]. From this result, we can easily deduce several new identities that have co
Sums of the form add((-1)^n q^(n(n-1)/2) x^n, n>=0) are called partial theta functions. In his lost notebook, Ramanujan recorded many identities for those functions. In 2003, Warnaar found an elegant formula for a sum of two partial theta functions.
We present an infinite family of Borwein type $+ - - $ conjectures. The expressions in the conjecture are related to multiple basic hypergeometric series with Macdonald polynomial argument.
The spt-function spt($n$) was introduced by Andrews as the weighted counting of partitions of $n$ with respect to the number of occurrences of the smallest part. In this survey, we summarize recent developments in the study of spt($n$), including con