ﻻ يوجد ملخص باللغة العربية
Taking into account the phase fraction during transition for the first-order magnetocaloric materials, an improved isothermal entropy change determination has been put forward based on the Clausius-Clapeyron (CC) equation. It was found that the isothermal entropy change value evaluated by our method is in excellent agreement with those determined from the Maxwell-relation (MR) for Ni-Mn-Sn Heusler alloys, which usually presents a weak field-induced phase transforming behavior. In comparison with MR, this method could give rise to a favorable result derived from few thermomagnetic measurements. More importantly, we can eliminate the isothermal entropy change overestimation derived from MR, which always exists in the cases of Ni-Co-Mn-In and MnAs systems with a prominent field-induced transition. These results confirmed that such a CC-equation-based method is quite practical and superior to the MR-based ones in eliminating the spurious spike and reducing measuring cost.
We combine spin polarised density functional theory and thermodynamic mean field theory to describe the phase transitions of antiperovskite manganese nitrides. We find that the inclusion of the localized spin contribution to the entropy, evaluated th
We report the fabrication of ErAl2 magnetocaloric wires by a powder-in-tube method (PIT) and the evaluation of magnetic entropy change through magnetization measurements. The magnetic entropy change of ErAl2 PIT wires exhibits similar behavior to the
The crystal structure and magnetic properties of MnCoxFe1-xSi (x=0-0.5) compounds were investigated. With increasing Fe content, the unit cell changes anisotropically and the magnetic property evolves gradually: Curie temperature decreases continuous
The compounds FeMnAsxP1-x are very promising as far as commercial applications of the magnetocaloric effect are concerned. However, the theoretical literature on magnetocaloric materials still adopts simple molecular-field models in the description o
Ultracapacitors are rapidly being adopted for use for a wide range of electrical energy storage applications. While ultracapacitors are able to deliver high rates of charge and discharge, they are limited in the amount of energy stored. The capacity