ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic entropy change of ErAl2 magnetocaloric wires fabricated by a powder-in-tube method

76   0   0.0 ( 0 )
 نشر من قبل Yamamoto Takafumi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fabrication of ErAl2 magnetocaloric wires by a powder-in-tube method (PIT) and the evaluation of magnetic entropy change through magnetization measurements. The magnetic entropy change of ErAl2 PIT wires exhibits similar behavior to the bulk counterpart, while its magnitude is reduced by the decrease in the volume fraction of ErAl2 due to the surrounding non-magnetic sheaths. We find that another effect reduces the magnetic entropy change of the ErAl2 PIT wires around the Curie temperature, and discuss its possible origin in terms of a correlation between magnetic properties of ErAl2 and mechanical properties of sheath material.

قيم البحث

اقرأ أيضاً

The critical current density (Jc) of hot isostatic pressed (HIPed) MgB2 wires, measured by d.c. transport and magnetization, is compared with that of similar wires annealed at ambient pressure. The HIPed wires have a higher Jc than the annealed wires , especially at high temperatures and magnetic fields, and higher irreversibility field (Hirr). The HIPed wires are promising for applications, with Jc>106 A/cm2 at 5 K and zero field and >104 A/cm2 at 1.5 T and 26.5 K, and Hirr ~ 17 T at 4 K. The improvement is attributed to a high density of structural defects, which are the likely source of vortex pinning. These defects, observed by transmission electron microscopy, include small angle twisting, tilting, and bending boundaries, resulting in the formation of sub-grains within MgB2 crystallites.
We demonstrate that Fe sheathed LaO0.9F0.1FeAs wires with Ti as a buffer layer were successfully fabricated by the powder-in-tube (PIT) method. Comparing to the common two-step vacuum quartz tube synthesis method, the PIT method is more convenient an d safe for synthesizing the novel iron-based layered superconductors. Structural analysis by mean of x-ray diffraction shows that the main phase of LaO0.9F0.1FeAs was obtained by this synthesis method. The transition temperature of the LaO0.9F0.1FeAs wire is around 25 K. The micrograph shows a homogeneous microstructure with a grain size of 1-3 micrometers. The results suggest that the PIT process is promising in preparing high-quality iron-based layered superconductor wires.
68 - Kun Xu , Zhe Li , Yuan-Lei Zhang 2015
Taking into account the phase fraction during transition for the first-order magnetocaloric materials, an improved isothermal entropy change determination has been put forward based on the Clausius-Clapeyron (CC) equation. It was found that the isoth ermal entropy change value evaluated by our method is in excellent agreement with those determined from the Maxwell-relation (MR) for Ni-Mn-Sn Heusler alloys, which usually presents a weak field-induced phase transforming behavior. In comparison with MR, this method could give rise to a favorable result derived from few thermomagnetic measurements. More importantly, we can eliminate the isothermal entropy change overestimation derived from MR, which always exists in the cases of Ni-Co-Mn-In and MnAs systems with a prominent field-induced transition. These results confirmed that such a CC-equation-based method is quite practical and superior to the MR-based ones in eliminating the spurious spike and reducing measuring cost.
We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this syn thesis method. The transition temperature of the SmO0.65F0.35FeAs wires was confirmed to be as high as 52 K. Based on magnetization measurements, it is found that a globe current can flow on macroscopic sample dimensions with Jc of ~3.9x10^3 A/cm^2 at 5 K and self field, while a high Jc about 2x10^5 A/cm^2 is observed within the grains, suggesting that a significant improvement in the globle Jc is possible. It should be noted that the Jc exhibits a very weak field dependence behavior. Furthermore, the upper critical fields (Hc2) determined according to the Werthamer-Helfand-Hohenberg formula are (T= 0 K) = 120 T, indicating a very encouraging application of the new superconductors.
We report dc transport and magnetization measurements of Jc in MgB2 wires fabricated by the powder-in-tube method, using commercial MgB2 powder with 5 %at Mg powder added as an additional source of magnesium, and stainless steel as sheath material. B y appropriate heat treatments, we have been able to increase Jc by more than one order of magnitude from that of the as-drawn wire. We show that one beneficial effect of the annealing is the elimination of most of the micro-cracks, and we correlate the increase in Jc with the disappearance of the weak-link-type behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا