ﻻ يوجد ملخص باللغة العربية
The compounds FeMnAsxP1-x are very promising as far as commercial applications of the magnetocaloric effect are concerned. However, the theoretical literature on magnetocaloric materials still adopts simple molecular-field models in the description of important properties like the entropy variation that accompanies applied isothermal magnetic field cycling, for instance. We apply a Green function theoretical treatment for such analysis. The advantages of such approach are well-known since the details of the crystal structure are incorporated in the model, as well as a precise description of correlations between spins of the transition metal ions can be obtained. For the sake of simplcity we adopt a simple one-exchange parameter Heisenberg model, and the observed first-order phase transitions are reproduced by the introduction of a biquadratic term in the hamiltonian. Good agreement with experimental magnetocaloric data for FeMnAsxP1-x compounds is obtained, as well as an agreement with the magnetic field dependence for these properties predicted from the Landau theory of continuous phase transitions.
Taking into account the phase fraction during transition for the first-order magnetocaloric materials, an improved isothermal entropy change determination has been put forward based on the Clausius-Clapeyron (CC) equation. It was found that the isoth
Van der Waals heterostructure based on layered two-dimensional (2D) materials offers unprecedented opportunities to create materials with atomic precision by design. By combining superior properties of each component, such heterostructure also provid
We report the fabrication of ErAl2 magnetocaloric wires by a powder-in-tube method (PIT) and the evaluation of magnetic entropy change through magnetization measurements. The magnetic entropy change of ErAl2 PIT wires exhibits similar behavior to the
Magnetocaloric materials can be useful in magnetic refrigeration applications, but to be practical the magneto-refrigerant needs to have a very large magnetocaloric effect (MCE) near room temperature for modest applied fields (<2 Tesla) with small hy
An approach is presented for the atomistic study of phonon transport in real dielectric nanowires via Green functions. The formalism is applied to investigate the phonon flow through nanowires coated by an amorphous material. Examples for a simple mo