ﻻ يوجد ملخص باللغة العربية
Ordered vector spaces E and F are said to be order isomorphic if there is a (not necessarily linear) bijection between them that preserves order. We investigate some situations under which an order isomorphism between two Banach lattices implies the persistence of some linear lattice structure. For instance, it is shown that if a Banach lattice E is order isomorphic to C(K) for some compact Hausdorff space K, then E is (linearly) isomorphic to C(K) as a Banach lattice. Similar results hold for Banach lattices order isomorphic to c_0, and for Banach lattices that contain a closed sublattice order isomorphic to c_0.
Let $X$ be a topological space. A subset of $C(X)$, the space of continuous real-valued functions on $X$, is a partially ordered set in the pointwise order. Suppose that $X$ and $Y$ are topological spaces, and $A(X)$ and $A(Y)$ are subsets of $C(X)$
The classical theorems of Banach and Stone, Gelfand and Kolmogorov, and Kaplansky show that a compact Hausdorff space $X$ is uniquely determined by the linear isometric structure, the algebraic structure, and the lattice structure, respectively, of t
[REVISED VERSION] The aim of this paper is to state a sharp version of the Konig supremum theorem, an equivalent reformulation of the Hahn--Banach theorem. We apply it to derive statements of the Lagrange multipliers, Karush-Kuhn-Tucker and Fritz Joh
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a
Associated to a nonzero homomorphism $varphi$ of a Banach algebra $A$, we regard special functionals, say $m_varphi$, on certain subspaces of $A^ast$ which provide equivalent statements to the existence of a bounded right approximate identity in the