ﻻ يوجد ملخص باللغة العربية
The classical theorems of Banach and Stone, Gelfand and Kolmogorov, and Kaplansky show that a compact Hausdorff space $X$ is uniquely determined by the linear isometric structure, the algebraic structure, and the lattice structure, respectively, of the space $C(X)$. In this paper, it is shown that for rather general subspaces $A(X)$ and $A(Y)$ of $C(X)$ and $C(Y)$ respectively, any linear bijection $T: A(X) to A(Y)$ such that $f geq 0$ if and only if $Tf geq 0$ gives rise to a homeomorphism $h: X to Y$ with which $T$ can be represented as a weighted composition operator. The three classical results mentioned above can be derived as corollaries. Generalizations to noncompact spaces and other function spaces such as spaces of uniformly continuous functions, Lipschitz functions and differentiable functions are presented.
Let $X$ be a topological space. A subset of $C(X)$, the space of continuous real-valued functions on $X$, is a partially ordered set in the pointwise order. Suppose that $X$ and $Y$ are topological spaces, and $A(X)$ and $A(Y)$ are subsets of $C(X)$
Ordered vector spaces E and F are said to be order isomorphic if there is a (not necessarily linear) bijection between them that preserves order. We investigate some situations under which an order isomorphism between two Banach lattices implies the
In this article, the authors give a survey on the recent developments of both the John--Nirenberg space $JN_p$ and the space BMO as well as their vanishing subspaces such as VMO, XMO, CMO, $VJN_p$, and $CJN_p$ on $mathbb{R}^n$ or a given cube $Q_0sub
It is proved the existence of large algebraic structures break --including large vector subspaces or infinitely generated free algebras-- inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the fam
We study the pointwise multiplier property of the characteristic function of the half-space on weighted mixed-norm anisotropic vector-valued function spaces of Bessel potential and Triebel-Lizorkin type.