ﻻ يوجد ملخص باللغة العربية
Associated to a nonzero homomorphism $varphi$ of a Banach algebra $A$, we regard special functionals, say $m_varphi$, on certain subspaces of $A^ast$ which provide equivalent statements to the existence of a bounded right approximate identity in the corresponding maximal ideal in $A$. For instance, applying a fixed point theorem yields an equivalent statement to the existence of a $m_varphi$ on $A^ast$; and, in addition we expatiate the case that if a functional $m_varphi$ is unique, then $m_varphi$ belongs to the topological center of the bidual algebra $A^{astast}$. An example of a function algebra, surprisingly, contradicts a conjecture that a Banach algebra $A$ is amenable if $A$ is $varphi$-amenable in every character $varphi$ and if functionals $m_varphi$ associated to the characters $varphi$ are uniformly bounded. Aforementioned are also elaborated on the direct sum of two given Banach algebras.
Rajchman measures of locally compact Abelian groups are studied for almost a century now, and they play an important role in the study of trigonometric series. Eymards influential work allowed generalizing these measures to the case of emph{non-Abeli
We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening
Let $K$ be a commutative compact hypergroup and $L^1(K)$ the hypergroup algebra. We show that $L^1(K)$ is amenable if and only if $pi_K$, the Plancherel weight on the dual space $widehat{K}$, is bounded. Furthermore, we show that if $K$ is an infinit
The pseudo-amenability of Brandt Banach semigroup algebras is considered.
For any finite unital commutative idempotent semigroup S, a unital semilattice, we show how to compute the amenability constant of its semigroup algebra l^1(S), which is always of the form 4n+1. We then show that these give lower bounds to amenabilit