ترغب بنشر مسار تعليمي؟ اضغط هنا

Isometries of combinatorial Banach spaces

94   0   0.0 ( 0 )
 نشر من قبل Adi Tcaciuc
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.



قيم البحث

اقرأ أيضاً

We introduce the class of slicely countably determined Banach spaces which contains in particular all spaces with the RNP and all spaces without copies of $ell_1$. We present many examples and several properties of this class. We give some applicatio ns to Banach spaces with the Daugavet and the alternative Daugavet properties, lush spaces and Banach spaces with numerical index 1. In particular, we show that the dual of a real infinite-dimensional Banach with the alternative Daugavet property contains $ell_1$ and that operators which do not fix copies of $ell_1$ on a space with the alternative Daugavet property satisfy the alternative Daugavet equation.
For every $alpha<omega_1$ we establish the existence of a separable Banach space whose Szlenk index is $omega^{alphaomega+1}$ and which is universal for all separable Banach spaces whose Szlenk-index does not exceed $omega^{alphaomega}$. In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with upper estimates.
Assume that $mathcal{I}$ is an ideal on $mathbb{N}$, and $sum_n x_n$ is a divergent series in a Banach space $X$. We study the Baire category, and the measure of the set $A(mathcal{I}):=left{t in {0,1}^{mathbb{N}} colon sum_n t(n)x_n textrm{ is } mat hcal{I}textrm{-convergent}right}$. In the category case, we assume that $mathcal{I}$ has the Baire property and $sum_n x_n$ is not unconditionally convergent, and we deduce that $A(mathcal{I})$ is meager. We also study the smallness of $A(mathcal{I})$ in the measure case when the Haar probability measure $lambda$ on ${0,1}^{mathbb{N}}$ is considered. If $mathcal{I}$ is analytic or coanalytic, and $sum_n x_n$ is $mathcal{I}$-divergent, then $lambda(A(mathcal{I}))=0$ which extends the theorem of Dindov{s}, v{S}alat and Toma. Generalizing one of their examples, we show that, for every ideal $mathcal{I}$ on $mathbb{N}$, with the property of long intervals, there is a divergent series of reals such that $lambda(A(Fin))=0$ and $lambda(A(mathcal{I}))=1$.
71 - S. Ghara , R. Gupta , 2020
Corresponding to any $(m-1)$-tuple of semi-spectral measures on the unit circle, a weighted Dirichlet-type space is introduced and studied. We prove that the operator of multiplication by the coordinate function on these weighted Dirichlet-type space s acts as an analytic $m$-isometry and satisfies a certain set of operator inequalities. Moreover, it is shown that an analytic $m$-isometry which satisfies this set of operator inequalities can be represented as an operator of multiplication by the coordinate function on a weighted Dirichlet-type space induced from an $(m-1)$-tuple of semi-spectral measures on the unit circle. This extends a result of Richter as well as of Olofsson on the class of analytic $2$-isometries. We also prove that all left invertible $m$-concave operators satisfying the aforementioned operator inequalities admit a Wold-type decomposition. This result serves as a key ingredient to our model theorem and also generalizes a result of Shimorin on a class of $3$-concave operators.
222 - Piotr Mikusinski 2014
The purpose of this article is to present the construction and basic properties of the general Bochner integral. The approach presented here is based on the ideas from the book The Bochner Integral by J. Mikusinski where the integral is presented for functions defined on $mathbb{R}^N$. In this article we present a more general and simplified construction of the Bochner integral on abstract measure spaces. An extension of the construction to functions with values in a locally convex space is also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا