ﻻ يوجد ملخص باللغة العربية
In [11], we introduced the notion of asymptotic gauge (AG), and we used it to construct Colombeau AG-algebras. This construction concurrently generalizes that of many different algebras used in Colombeaus theory, e.g. the special one $mathcal{G}^{srm}$, the full one $gse$, the NSA based algebra of asymptotic functions $hat{mathcal{G}}$, and the diffeomorphism invariant algebras $gsd$, $mathcal{G}^{2}$ and $hat{mathcal{G}}$. In this paper we study the categorical properties of the construction of Colombeau AG-algebras with respect to the choice of the AG, and we show their consequences regarding the solvability of generalized ODE.
We use the general notion of set of indices to construct algebras of nonlinear generalized functions of Colombeau type. They are formally defined in the same way as the special Colombeau algebra, but based on more general growth condition formalized
We define a general notion of set of indices which, using concepts from pre-ordered sets theory, permits to unify the presentation of several Colombeau-type algebras of nonlinear generalized functions. In every set of indices it is possible to genera
This article is the natural continuation of the paper: Mukhammadiev A.~et al Supremum, infimum and hyperlimits of Colombeau generalized numbers in this journal. Since the ring $tilde{R}$ of Robinson-Colombeau is non-Archimedean, a classical series $s
In the present paper we propose a new approach to quantum fields in terms of category algebras and states on categories. We define quantum fields and their states as category algebras and states on causal categories with partial involution structures
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this clai