ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperseries in the non-Archimedean ring of Colombeau generalized numbers

74   0   0.0 ( 0 )
 نشر من قبل Diksha Tiwari
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is the natural continuation of the paper: Mukhammadiev A.~et al Supremum, infimum and hyperlimits of Colombeau generalized numbers in this journal. Since the ring $tilde{R}$ of Robinson-Colombeau is non-Archimedean, a classical series $sum_{n=0}^{+infty}a_{n}$ of generalized numbers $a_{n}intilde{R}$ is convergent if and only if $a_{n}to0$ in the sharp topology. Therefore, this property does not permit us to generalize several classical results, mainly in the study of analytic generalized functions (as well as, e.g., in the study of sigma-additivity in integration of generalized functions). Introducing the notion of hyperseries, we solve this problem recovering classical examples of analytic functions as well as several classical results.



قيم البحث

اقرأ أيضاً

In [11], we introduced the notion of asymptotic gauge (AG), and we used it to construct Colombeau AG-algebras. This construction concurrently generalizes that of many different algebras used in Colombeaus theory, e.g. the special one $mathcal{G}^{srm }$, the full one $gse$, the NSA based algebra of asymptotic functions $hat{mathcal{G}}$, and the diffeomorphism invariant algebras $gsd$, $mathcal{G}^{2}$ and $hat{mathcal{G}}$. In this paper we study the categorical properties of the construction of Colombeau AG-algebras with respect to the choice of the AG, and we show their consequences regarding the solvability of generalized ODE.
195 - Anatoly N. Kochubei 2021
Let $D^alpha, alpha>0$, be the Vladimirov-Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity $D^alpha D^{-alpha}f=f$ was known only for the case where $f$ has a compact supp ort. Following a result by Samko about the fractional Laplacian of real analysis, we extend the above identity in terms of $L^p$-convergence of truncated integrals. Differences between real and non-Archimedean cases are discussed.
We study a non-archimedean (NA) version of transportation problems and introduce naturally arising ultra-norms which we call Kantorovich ultra-norms. For every ultra-metric space and every NA valued field (e.g., the field $mathbb Q_{p}$ of $p$-adic n umbers) the naturally defined inf-max cost formula achieves its infimum. We also present
We use the general notion of set of indices to construct algebras of nonlinear generalized functions of Colombeau type. They are formally defined in the same way as the special Colombeau algebra, but based on more general growth condition formalized by the notion of asymptotic gauge. This generalization includes the special, full and nonstandard analysis based Colombeau type algebras in a unique framework. We compare Colombeau algebras generated by asymptotic gauges with other analogous construction, and we study systematically their properties, with particular attention to the existence and definition of embeddings of distributions. We finally prove that, in our framework, for every linear homogeneous ODE with generalized coefficients there exists a minimal Colombeau algebra generated by asymptotic gauges in which the ODE can be uniquely solved. This marks a main difference with the Colombeau special algebra, where only linear homogeneous ODEs satisfying some restriction on the coefficients can be solved.
145 - Anatoly N. Kochubei 2020
In an earlier paper (A. N. Kochubei, {it Pacif. J. Math.} 269 (2014), 355--369), the author considered a restriction of Vladimirovs fractional differentiation operator $D^alpha$, $alpha >0$, to radial functions on a non-Archimedean field. In particul ar, it was found to possess such a right inverse $I^alpha$ that the appropriate change of variables reduces equations with $D^alpha$ (for radial functions) to integral equations whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we begin an operator-theoretic investigation of the operator $I^alpha$, and study a related analog of the Laplace transform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا