ﻻ يوجد ملخص باللغة العربية
We use the general notion of set of indices to construct algebras of nonlinear generalized functions of Colombeau type. They are formally defined in the same way as the special Colombeau algebra, but based on more general growth condition formalized by the notion of asymptotic gauge. This generalization includes the special, full and nonstandard analysis based Colombeau type algebras in a unique framework. We compare Colombeau algebras generated by asymptotic gauges with other analogous construction, and we study systematically their properties, with particular attention to the existence and definition of embeddings of distributions. We finally prove that, in our framework, for every linear homogeneous ODE with generalized coefficients there exists a minimal Colombeau algebra generated by asymptotic gauges in which the ODE can be uniquely solved. This marks a main difference with the Colombeau special algebra, where only linear homogeneous ODEs satisfying some restriction on the coefficients can be solved.
In [11], we introduced the notion of asymptotic gauge (AG), and we used it to construct Colombeau AG-algebras. This construction concurrently generalizes that of many different algebras used in Colombeaus theory, e.g. the special one $mathcal{G}^{srm
We define a general notion of set of indices which, using concepts from pre-ordered sets theory, permits to unify the presentation of several Colombeau-type algebras of nonlinear generalized functions. In every set of indices it is possible to genera
This article is the natural continuation of the paper: Mukhammadiev A.~et al Supremum, infimum and hyperlimits of Colombeau generalized numbers in this journal. Since the ring $tilde{R}$ of Robinson-Colombeau is non-Archimedean, a classical series $s
Generalizations of Ostrowski type inequality for functions of Lipschitzian type are established. Applications in numerical integration and cumulative distribution functions are also given.
We classify the weak*-closed maximal left ideals of the measure algebra $M(G)$ for certain Hermitian locally compact groups $G$ in terms of the irreducible representations of $G$ and their asymptotic properties. In particular, we obtain a classificat