ترغب بنشر مسار تعليمي؟ اضغط هنا

On functors from category of Giry algebras to category of convex spaces

74   0   0.0 ( 0 )
 نشر من قبل Tomas Crhak
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Tomas Crhak




اسأل ChatGPT حول البحث

In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this claim have been refuted in our earlier paper (arXiv:1803.07956). Building on the results of that paper we prove that no such equivalence exists and a parallel statement is proved for the category of super convex spaces.



قيم البحث

اقرأ أيضاً

96 - Hayato Saigo 2021
The purpose of this paper is to build a new bridge between category theory and a generalized probability theory known as noncommutative probability or quantum probability, which was originated as a mathematical framework for quantum theory, in terms of states as linear functionals defined on category algebras. We clarify that category algebras can be considered as generalized matrix algebras and that states on categories as linear functionals defined on category algebras turn out to be generalized of probability measures on sets as discrete categories. Moreover, by establishing a generalization of famous GNS (Gelfand-Naimark-Segal) construction, we obtain representations of category algebras of $^{dagger}$-categories on certain generalized Hilbert spaces which we call semi-Hilbert modules over rigs.
Given a DG-category A we introduce the bar category of modules Modbar(A). It is a DG-enhancement of the derived category D(A) of A which is isomorphic to the category of DG A-modules with A-infinity morphisms between them. However, it is defined intr insically in the language of DG-categories and requires no complex machinery or sign conventions of A-infinity categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration we develop homotopy adjunction theory for tensor functors between derived categories of DG-categories. It allows us to show in an enhanced setting that given a functor F with left and right adjoints L and R the functorial complex $FR rightarrow FRFR rightarrow FR rightarrow Id$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of F. We then write down four induced functorial Postnikov towers computing this convolution.
We provide axioms that guarantee a category is equivalent to that of continuous linear functions between Hilbert spaces. The axioms are purely categorical and do not presuppose any analytical structure. This addresses a question about the mathematica l foundations of quantum theory raised in reconstruction programmes such as those of von Neumann, Mackey, Jauch, Piron, Abramsky, and Coecke.
68 - Paolo Perrone 2019
These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics, nor a ny of the disciplines where category theory is traditionally applied, such as algebraic geometry or theoretical computer science. The only knowledge that is assumed from the reader is linear algebra. All concepts are explained by giving concrete examples from different, non-specialized areas of mathematics (such as basic group theory, graph theory, and probability). Not every example is helpful for every reader, but hopefully every reader can find at least one helpful example per concept. The reader is encouraged to read all the examples, this way they may even learn something new about a different field. Particular emphasis is given to the Yoneda lemma and its significance, with both intuitive explanations, detailed proofs, and specific examples. Another common theme in these notes is the relationship between categories and directed multigraphs, which is treated in detail. From the applied point of view, this shows why categorical thinking can help whenever some process is taking place on a graph. From the pure math point of view, this can be seen as the 1-dimensional first step into the theory of simplicial sets. Finally, monads and comonads are treated on an equal footing, differently to most literature in which comonads are often overlooked as just the dual to monads. Theorems, interpretations and concrete examples are given for monads as well as for comonads.
We make some beginning observations about the category $mathbb{E}mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R,S$ is a mapping from the set of $R$-equivalence classes to that of $S$-equivalence classes, which is induced by a computable function. We also consider some full subcategories of $mathbb{E}mathrm{q}$, such as the category $mathbb{E}mathrm{q}(Sigma^0_1)$ of computably enumerable equivalence relations (called ceers), the category $mathbb{E}mathrm{q}(Pi^0_1)$ of co-computably enumerable equivalence relations, and the category $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in $mathbb{E}mathrm{q}(Sigma^0_1)$ the epimorphisms coincide with the onto morphisms, but in $mathbb{E}mathrm{q}(Pi^0_1)$ there are epimorphisms that are not onto. Moreover, $mathbb{E}mathrm{q}$, $mathbb{E}mathrm{q}(Sigma^0_1)$, and $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in $mathbb{E}mathrm{q}(Pi^0_1)$ whose coequalizer in $mathbb{E}mathrm{q}$ is not an object of $mathbb{E}mathrm{q}(Pi^0_1)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا