ﻻ يوجد ملخص باللغة العربية
We use ultra-high resolution, tunable, VUV laser-based, angle-resolved photoemission spectroscopy (ARPES) and temperature and field dependent resistivity and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compound that manifests exceptionally large, temperature dependent magnetoresistance. The temperature dependence of the TEP shows a change of slope at T=175 K and the Kohler rule breaks down above 70-140 K range. The Fermi surface consists of two electron pockets and two pairs of hole pockets along the X-Gamma-X direction. Upon increase of temperature from 40K, the hole pockets gradually sink below the chemical potential. Like BaFe2As2, WTe2 has clear and substantial changes in its Fermi surface driven by modest changes in temperature. In WTe2, this leads to a rare example of temperature induced Lifshitz transition, associated with the complete disappearance of the hole pockets. These dramatic changes of the electronic structure naturally explain unusual features of the transport data.
The nodal-line semimetals have attracted immense interest due to the unique electronic structures such as the linear dispersion and the vanishing density of states as the Fermi energy approaching the nodes. Here, we report temperature-dependent trans
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping
We have systematically measured the transport properties in the layered rhodium oxide K$_{x}$RhO$_{2}$ single crystals ($0.5lesssim x lesssim 0.67$), which is isostructural to the thermoelectric oxide Na$_{x}$CoO$_{2}$. We find that below $x = 0.64$
Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-stand